-
Notifications
You must be signed in to change notification settings - Fork 110
/
Copy pathinfer_path.py
79 lines (68 loc) · 3.27 KB
/
infer_path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import functools
import time
import wave
from masr.predict import MASRPredictor
from masr.utils.utils import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
add_arg('configs', str, 'configs/conformer.yml', "配置文件")
add_arg('wav_path', str, 'dataset/test.wav', "预测音频的路径")
add_arg('is_long_audio', bool, False, "是否为长语音")
add_arg('real_time_demo', bool, False, "是否使用实时语音识别演示")
add_arg('use_gpu', bool, True, "是否使用GPU预测")
add_arg('use_pun', bool, False, "是否给识别结果加标点符号")
add_arg('is_itn', bool, False, "是否对文本进行反标准化")
add_arg('model_path', str, 'models/conformer_streaming_fbank/inference.pt', "导出的预测模型文件路径")
add_arg('pun_model_dir', str, 'models/pun_models/', "加标点符号的模型文件夹路径")
args = parser.parse_args()
print_arguments(args=args)
# 获取识别器
predictor = MASRPredictor(configs=args.configs,
model_path=args.model_path,
use_gpu=args.use_gpu,
use_pun=args.use_pun,
pun_model_dir=args.pun_model_dir)
# 短语音识别
def predict_audio():
start = time.time()
result = predictor.predict(audio_data=args.wav_path, use_pun=args.use_pun, is_itn=args.is_itn)
score, text = result['score'], result['text']
print(f"消耗时间:{int(round((time.time() - start) * 1000))}ms, 识别结果: {text}, 得分: {int(score)}")
# 长语音识别
def predict_long_audio():
start = time.time()
result = predictor.predict_long(audio_data=args.wav_path, use_pun=args.use_pun, is_itn=args.is_itn)
score, text = result['score'], result['text']
print(f"长语音识别结果,消耗时间:{int(round((time.time() - start) * 1000))}, 得分: {score}, 识别结果: {text}")
# 实时识别模拟
def real_time_predict_demo():
# 识别间隔时间
interval_time = 0.5
CHUNK = int(16000 * interval_time)
# 读取数据
wf = wave.open(args.wav_path, 'rb')
channels = wf.getnchannels()
samp_width = wf.getsampwidth()
sample_rate = wf.getframerate()
data = wf.readframes(CHUNK)
# 播放
while data != b'':
start = time.time()
d = wf.readframes(CHUNK)
result = predictor.predict_stream(audio_data=data, use_pun=args.use_pun, is_itn=args.is_itn, is_end=d == b'',
channels=channels, samp_width=samp_width, sample_rate=sample_rate)
data = d
if result is None: continue
score, text = result['score'], result['text']
print(f"【实时结果】:消耗时间:{int((time.time() - start) * 1000)}ms, 识别结果: {text}, 得分: {int(score)}")
# 重置流式识别
predictor.reset_stream()
if __name__ == "__main__":
if args.real_time_demo:
real_time_predict_demo()
else:
if args.is_long_audio:
predict_long_audio()
else:
predict_audio()