-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpipeline.py
63 lines (49 loc) · 2.15 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from common_definitions import *
from model import *
import os
class Brain:
def __init__(self, factor_size, k, l, window_length, channel_size, learning_rate=LEARNING_RATE):
self.model = GLOW(factor_size, k, l, window_length, channel_size)
# # lr scheduler
# lr_scheduler = tf.keras.optimizers.schedules.ExponentialDecay(
# learning_rate,
# decay_steps=1111,
# decay_rate=0.91,
# staircase=True)
# vars for training
self.optimizer = tf.keras.optimizers.Adam(learning_rate)
def forward(self, inputs):
return self.model(inputs, logdet=True)[0]
def backward(self, inputs):
return self.model(inputs, reverse=True)[0]
@tf.function
def train_step(self, inputs):
with tf.GradientTape() as tape:
with tf.GradientTape() as tape_inside:
tape_inside.watch(inputs)
z, logpx = self.model(inputs, logdet=True, training=True)
# define the negative log-likelihood
nll = tf.clip_by_value(-logpx, -1e9, 1e9)
gradient_to_inputs = (tf.norm(tape_inside.gradient(nll, inputs)) - 1) ** 2
nll += LAMBDA_LIPSCHITZ * gradient_to_inputs
# with tf.GradientTape() as tape:
# tape.watch(inputs)
# z, logpx = self.model(inputs, logdet=True, training=True)
# # define the negative log-likelihood
# nll = tf.clip_by_value(-logpx, -1e9, 1e9)
model_gradients = tape.gradient(nll, self.model.trainable_variables)
# tf.print([tf.reduce_mean(tf.abs(m_g)) for m_g in model_gradients])
self.optimizer.apply_gradients(zip(model_gradients, self.model.trainable_variables))
return z, nll
def save_weights(self, path):
parent_dir = os.path.dirname(path)
if not os.path.exists(parent_dir):
os.makedirs(parent_dir)
# Save the weights
self.model.save_weights(path + ".h5")
def load_weights(self, path):
try:
self.model.load_weights(path + ".h5")
except:
return "Weights cannot be loaded"
return "Weights loaded"