forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwins_svt-s_uperhead_8x2_512x512_160k_ade20k.py
43 lines (38 loc) · 1.16 KB
/
twins_svt-s_uperhead_8x2_512x512_160k_ade20k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
_base_ = [
'../_base_/models/twins_pcpvt-s_upernet.py',
'../_base_/datasets/ade20k.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_160k.py'
]
checkpoint = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/twins/alt_gvt_small_20220308-7e1c3695.pth' # noqa
model = dict(
backbone=dict(
type='SVT',
init_cfg=dict(type='Pretrained', checkpoint=checkpoint),
embed_dims=[64, 128, 256, 512],
num_heads=[2, 4, 8, 16],
mlp_ratios=[4, 4, 4, 4],
depths=[2, 2, 10, 4],
windiow_sizes=[7, 7, 7, 7],
norm_after_stage=True),
decode_head=dict(in_channels=[64, 128, 256, 512]),
auxiliary_head=dict(in_channels=256))
optimizer = dict(
_delete_=True,
type='AdamW',
lr=0.00006,
betas=(0.9, 0.999),
weight_decay=0.01,
paramwise_cfg=dict(custom_keys={
'pos_block': dict(decay_mult=0.),
'norm': dict(decay_mult=0.)
}))
lr_config = dict(
_delete_=True,
policy='poly',
warmup='linear',
warmup_iters=1500,
warmup_ratio=1e-6,
power=1.0,
min_lr=0.0,
by_epoch=False)
data = dict(samples_per_gpu=2, workers_per_gpu=2)