-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_FFGT_me.py
52 lines (45 loc) · 2.59 KB
/
main_FFGT_me.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import random as random
import torch
import copy
import argparse
from models.Semi_FFGT import FFGT
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='amazon_photo', help='dataset used:choice: Cora, CiteSeer, acm, amazon_photo,.')
parser.add_argument('--lr', type=float, default=0.0002, help='learning ratio.')
parser.add_argument('--wd', type=float, default=5e-5, help='weight delay.')
parser.add_argument('--order', type=int, default=3, help='number of multi-hop graph.')
parser.add_argument('--dropout', type=float, default=0.6, help='dropout in hidden layers.')
parser.add_argument('--dropout_att', type=float, default=0.6, help='dropout in self-attention layers.')
parser.add_argument('--Trans_layer_num', type=int, default=2, help='the number of layers.')
parser.add_argument('--hid_dim', type=int, default=32, help='hidden dimension.')
parser.add_argument('--tau', type=float, default=0.1, help='hyparameter in Graph contrastive loss.')
parser.add_argument('--alpha', type=float, default=1000, help='trade-off hybrid representation in loss function.')
parser.add_argument('--beta', type=float, default=1000, help='trade-off high-frequency representation in loss function.')
parser.add_argument('--loadData', type=bool, default=True, help='True indicates loading existing perturbed data')
parser.add_argument('--attack_method', type=str, default='metattack', help='From [metattack, nettack randomattack]')
parser.add_argument('--ptb_rate', type=float, default=0.15, help='perturbed ratio to graph data, selecting from metattack[0,0.05, 0.1, 0.15, 0.20, 0.25], nettack [0, 1,2,3,4,5] ,RandomAttack.[0,0.1.0.2.0.3.0.4.0.5].')
parser.add_argument('--nb_epochs', type=int, default=5000, help='maximal epochs.')
parser.add_argument('--patience', type=int, default=60, help='early stop.')
args = parser.parse_args()
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if __name__ == '__main__':
if torch.cuda.is_available():
args.device = torch.device('cuda:4')
else:
args.device = torch.device('cpu')
ACC_seed = []
Time_seed = []
for seed in range(2020, 2024):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
embedder = FFGT(copy.deepcopy(args))
test_acc, training_time, stop_epoch = embedder.training()
ACC_seed.append(test_acc)
Time_seed.append(training_time)
torch.cuda.empty_cache()
ACC_seed = np.array(ACC_seed)*100
print("-->ACC %.4f -->STD is: %.4f" %(np.mean(ACC_seed), np.std(ACC_seed)))