-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtracklet_smoothing.py
270 lines (230 loc) · 10.6 KB
/
tracklet_smoothing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
from sklearn.linear_model import LinearRegression, HuberRegressor
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel, Matern, ExpSineSquared
from utils.utils import running_mean
from utils.visualization import draw_tracklet, draw_tracklet_compare
def tracklet_smoothing_org(tracklets, dets, apply_final=True, viz_flag=False):
"""
refine object 3d localization results by tracking
:param tracklets: <list> (frame_id, obj_id)
:param dets: detections from detectors for all frames
:param dets_gt: ground truth detections for all frames
:return:
"""
for tracklet in tracklets:
points_3d = []
if tracklet is not None:
if len(tracklet) <= 2:
# only have one or two points in the tracklet, keep old value
for point in tracklet:
frame_id, obj_id = point
obj = dets[frame_id][obj_id]
obj.set_tracklet_refine_loc(obj.x_3d_final, obj.y_3d_final, obj.z_3d_final)
else:
for point in tracklet:
frame_id, obj_id = point
obj = dets[frame_id][obj_id]
points_3d.append([obj.x_3d_final, obj.y_3d_final, obj.z_3d_final])
points_3d = np.array(points_3d).T # points_3d: 3 x n_points
points_3d_smooth = tracklet_smoothing_regr_huber_seg(points_3d)
if viz_flag:
# if points_3d_gt.shape[0] == 0:
# draw_tracklet(points_3d, points_3d_smooth)
# else:
# draw_tracklet(points_3d, points_3d_smooth, points_3d_gt)
points_3d_lr = tracklet_smoothing_linear_regr(points_3d)
points_3d_hr = tracklet_smoothing_regr_huber(points_3d, alpha=0)
points_3d_ts = tracklet_smoothing_regr_huber_seg(points_3d, alpha=0.2)
draw_tracklet_compare(points_3d, points_3d_lr, points_3d_hr, points_3d_ts)
for p_id, point in enumerate(tracklet):
frame_id, obj_id = point
obj = dets[frame_id][obj_id]
point_smooth = points_3d_smooth[:, p_id]
obj.set_tracklet_refine_loc(point_smooth[0], point_smooth[1], point_smooth[2],
apply_final=apply_final)
return
def tracklet_smoothing_after_gpe(tracklets, dets, dets_gt, viz_flag=False):
"""
refine object 3d localization results by tracking
:param tracklets: <list> (frame_id, obj_id)
:param dets: detections from detectors for all frames
:param dets_gt: ground truth detections for all frames
:return:
"""
for tracklet in tracklets:
points_3d = []
points_3d_gt = []
if tracklet is not None:
if len(tracklet) <= 2:
# only have one or two points in the tracklet, keep old value
for p_id, point in enumerate(tracklet):
frame_id, obj_id = point
obj = dets[frame_id][obj_id]
if obj.matched:
obj_gt = dets_gt[frame_id][obj.matched_id]
if obj.depth_conf < 0.4 and obj_gt.z_3d > 25: # use gp
obj.set_tracklet_refine_loc(obj.x_3d_proj_gp, obj.y_3d_proj_gp, obj.z_3d_proj_gp)
else:
obj.set_tracklet_refine_loc(obj.x_3d_proj_d, obj.y_3d_proj_d, obj.z_3d_proj_d)
else: # no gt matched, use depth initial results
obj.set_tracklet_refine_loc(obj.x_3d_proj_d, obj.y_3d_proj_d, obj.z_3d_proj_d)
else:
for point in tracklet:
frame_id, obj_id = point
obj = dets[frame_id][obj_id]
if obj.matched:
obj_gt = dets_gt[frame_id][obj.matched_id]
if obj.depth_conf < 0.4 and obj_gt.z_3d > 25: # use gp
points_3d.append([obj.x_3d_proj_gp, obj.y_3d_proj_gp, obj.z_3d_proj_gp])
else:
points_3d.append([obj.x_3d_proj_d, obj.y_3d_proj_d, obj.z_3d_proj_d])
points_3d_gt.append([obj_gt.x_3d, obj_gt.y_3d, obj_gt.z_3d])
else: # no gt matched, use depth initial results
points_3d.append([obj.x_3d_proj_d, obj.y_3d_proj_d, obj.z_3d_proj_d])
points_3d = np.array(points_3d).T # points_3d: 3 x n_points
points_3d_gt = np.array(points_3d_gt).T # points_3d_gt: 3 x n_points
# points_3d_smooth = tracklet_smoothing_regr_huber(points_3d)
points_3d_smooth = tracklet_smoothing_regr_huber_seg(points_3d)
if viz_flag:
# if points_3d_gt.shape[0] == 0:
# draw_tracklet(points_3d, points_3d_smooth)
# else:
# draw_tracklet(points_3d, points_3d_smooth, points_3d_gt)
points_3d_lr = tracklet_smoothing_linear_regr(points_3d)
points_3d_hr = tracklet_smoothing_regr_huber(points_3d, alpha=0)
points_3d_ts = tracklet_smoothing_regr_huber_seg(points_3d, alpha=0.2)
if points_3d_gt.shape[0] == 0:
draw_tracklet_compare(points_3d, points_3d_lr, points_3d_hr, points_3d_ts)
else:
draw_tracklet_compare(points_3d, points_3d_lr, points_3d_hr, points_3d_ts, points_3d_gt)
for p_id, point in enumerate(tracklet):
frame_id, obj_id = point
obj = dets[frame_id][obj_id]
point_smooth = points_3d_smooth[:, p_id]
obj.set_tracklet_refine_loc(point_smooth[0], point_smooth[1], point_smooth[2])
return
def tracklet_smoothing_pred(points_3d):
"""
tracklet smoothing using prediction
:param points_3d: 3 x n_points
:return: smoothed points with the same shape with points_3d
"""
vectors = np.diff(points_3d)
n_vectors = vectors.shape[1]
vectors_new = []
alpha = 0.6
beta = 0.4
vec_prev = vectors[:, -1]
vectors_new.append(vec_prev)
for vec_id in reversed(range(n_vectors - 1)):
vec_real = vectors[:, vec_id]
vec_new = alpha * vec_real + (1 - alpha) * vec_prev
vectors_new.append(vec_new)
vec_prev = beta * vec_prev + (1 - beta) * vec_new
vectors_new = np.array(vectors_new).T
# vectors_new_flip = np.fliplr(vectors_new)
point0 = np.reshape(points_3d[:, -1], (3, 1))
points_3d_new = np.cumsum(np.hstack((point0, - vectors_new)), axis=1)
return points_3d_new
def tracklet_smoothing_ravg(points_3d):
"""
tracklet smoothing using running average
:param points_3d: 3 x n_points
:return:
"""
win = 2
_, n_points = points_3d.shape
n_points_new = n_points - win + 1
points_3d_new = np.zeros((3, n_points_new))
# running average (more efficient)
points_3d_new[0] = running_mean(points_3d[0], win)
points_3d_new[1] = running_mean(points_3d[1], win)
points_3d_new[2] = running_mean(points_3d[2], win)
# running average using convolution
# points_3d_new[0] = np.convolve(points_3d[0], np.ones((win,))/win, mode='valid')
# points_3d_new[1] = np.convolve(points_3d[1], np.ones((win,))/win, mode='valid')
# points_3d_new[2] = np.convolve(points_3d[2], np.ones((win,))/win, mode='valid')
# TODO: pad points_3d_new as the same shape with the input
return points_3d_new
def tracklet_smoothing_linear_regr(points_3d):
"""
tracklet smoothing using regression (gaussian process regression)
:param points_3d: 3 x n_points
:return:
"""
# TODO: add depth confidence into consideration
# confidence can be used to adjust alpha
_, n_points = points_3d.shape
# print(points_3d.shape)
t = np.reshape(np.arange(n_points), (n_points, 1))
points_3d_new = []
for coor in points_3d:
lr = LinearRegression().fit(t, coor)
# print(huber.score(t, coor))
coor_new = lr.predict(t)
coor_final = coor_new
points_3d_new.append(coor_final)
points_3d_new = np.array(points_3d_new)
return points_3d_new
def tracklet_smoothing_regr_huber(points_3d, alpha=0.5):
"""
tracklet smoothing using regression (gaussian process regression)
:param points_3d: 3 x n_points
:return:
"""
# TODO: add depth confidence into consideration
# confidence can be used to adjust alpha
_, n_points = points_3d.shape
# print('===')
# print(points_3d.shape)
# print(points_3d)
t = np.reshape(np.arange(n_points), (n_points, 1))
points_3d_new = []
for coor in points_3d:
huber = HuberRegressor(epsilon=1.35).fit(t, coor)
# print(huber.score(t, coor))
coor_new = huber.predict(t)
coor_final = alpha * coor + (1 - alpha) * coor_new
points_3d_new.append(coor_final)
points_3d_new = np.array(points_3d_new)
return points_3d_new
def tracklet_smoothing_regr_huber_seg(points_3d, alpha=0.4):
win = 20
n_points = points_3d.shape[1]
if n_points <= win:
points_3d_new = tracklet_smoothing_regr_huber(points_3d)
else:
n_regr = n_points - win + 1
regr_results = [[[np.nan] * n_points] * 3] * n_regr
regr_results = np.array(regr_results)
for i in range(n_regr):
regr_results[i, :, i:i + win] = tracklet_smoothing_regr_huber(points_3d[:, i:i + win], alpha=alpha)
# print(regr_results)
points_3d_new = np.nanmean(regr_results, axis=0)
# print(points_3d_new)
return points_3d_new
def tracklet_smoothing_regr_gpr(points_3d):
"""
tracklet smoothing using regression (gaussian process regression)
:param points_3d: 3 x n_points
:return:
"""
# TODO: add depth confidence into consideration
# confidence can be used to adjust alpha
alpha = 0
_, n_points = points_3d.shape
# print(points_3d.shape)
t = np.reshape(np.arange(n_points), (n_points, 1))
# t_dense = np.reshape(np.arange(0, n_points, 0.1), (10 * n_points, 1))
points_3d_new = []
for coor in points_3d:
# kernel = Matern()
gpr = GaussianProcessRegressor(alpha=0.1, normalize_y=True).fit(t, coor)
# print(gpr.score(t, coor))
coor_new = gpr.predict(t)
# coor_final = alpha * coor + (1 - alpha) * coor_new
coor_final = coor_new
points_3d_new.append(coor_final)
points_3d_new = np.array(points_3d_new)
return points_3d_new