-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
177 lines (127 loc) · 5.9 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python
# coding: utf-8
# # Finetuning FakeNewsAAAI
# FakeNewsAAAI is a Fake News dataset with 2 possible labels: `real` and `fake`
# In[1]:
import os, sys
import re
import argparse
import random
import numpy as np
import pandas as pd
import torch
from torch import optim
import torch.nn.functional as F
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoConfig, AutoTokenizer
from utils.forward_fn import forward_sequence_classification
from utils.metrics import classification_metrics_fn
from utils.data_utils import FakeNewsDataset, FakeNewsDataLoader
from loss import *
###
# common functions
###
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def count_param(module, trainable=False):
if trainable:
return sum(p.numel() for p in module.parameters() if p.requires_grad)
else:
return sum(p.numel() for p in module.parameters())
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def metrics_to_string(metric_dict):
string_list = []
for key, value in metric_dict.items():
string_list.append('{}:{:.4f}'.format(key, value))
return ' '.join(string_list)
# Train
def evaluate(args, model, valid_loader, result_path):
if args.loss == 'SCE':
criterion = SCELoss()
elif args.loss == 'GCE':
criterion = GCELoss()
elif args.loss == 'CL':
criterion = CLoss()
# Evaluate on validation
model.eval()
torch.set_grad_enabled(False)
total_loss, total_correct, total_labels = 0, 0, 0
list_hyp, list_label = [], []
pbar = tqdm(valid_loader, leave=True, total=len(valid_loader))
for i, batch_data in enumerate(pbar):
batch_seq = batch_data[-1]
ce_loss, batch_hyp, batch_label, logits, labels = forward_sequence_classification(model, batch_data[1:-1], i2w=i2w, device='cuda')
if args.loss == 'CE':
loss = ce_loss
else:
loss = criterion(logits.view(-1, 2), labels.view(-1))
# Calculate total loss
valid_loss = loss.item()
total_loss = total_loss + valid_loss
# Calculate evaluation metrics
list_hyp += batch_hyp
list_label += batch_label
metrics = classification_metrics_fn(list_hyp, list_label)
pbar.set_description("VALID LOSS:{:.4f} {}".format(total_loss/(i+1), metrics_to_string(metrics)))
metrics = classification_metrics_fn(list_hyp, list_label)
print("VALID LOSS:{:.4f} {}".format(total_loss/(i+1), metrics_to_string(metrics)))
with open(result_path, 'w') as f:
f.write("VALID LOSS:{:.4f} {}".format(total_loss/(i+1), metrics_to_string(metrics)))
def test(args, model, valid_loader, result_path):
# Evaluate on validation
model.eval()
torch.set_grad_enabled(False)
list_hyp, list_ids = [], []
pbar = tqdm(valid_loader, leave=True, total=len(valid_loader))
for i, batch_data in enumerate(pbar):
batch_ids = batch_data[0]
batch_hyp, logits = forward_sequence_classification(model, batch_data[1:-1], i2w=i2w, is_test=True, device='cuda')
# Calculate evaluation metrics
list_hyp += batch_hyp
list_ids += batch_ids
with open(result_path, 'w') as f:
print('writing')
f.write('id,label')
for id, pre in zip(list_ids, list_hyp):
f.write('\n'+str(id)+','+pre)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, default='roberta-large')
parser.add_argument('--per_gpu_eval_batch_size', type=int, default=16)
parser.add_argument('--loss', type=str, default='CE')
parser.add_argument('--test', type=bool, default=False)
args = parser.parse_args()
print(args)
# args = Args()
# Set random seed
set_seed(26092020)
# # Fine Tuning & Evaluation
for model_path in ['/home/jiziwei/FakeNews/math6380/save/roberta_finetune.CE.1e-6/roberta-large-CE3.pt']:
# Load Tokenizer and Config
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
config = AutoConfig.from_pretrained(args.model_name_or_path)
config.num_labels = FakeNewsDataset.NUM_LABELS
# test_dataset_path = '/home/jiziwei/FakeNews/math6380/data/covid19_infodemic_english_data/processed_covid19_infodemic_english_data2.tsv'
test_dataset_path = '/home/jiziwei/FakeNews/math6380/data/valid.tsv'
# test_dataset_path = '/home/jiziwei/FakeNews/math6380/data/Constraint_English_Test.tsv'
# Instantiate model
model = AutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, config=config)
model.load_state_dict(torch.load(model_path))
model = model.cuda()
if args.test:
test_dataset = FakeNewsDataset(tokenizer, dataset_path=test_dataset_path, lowercase=False, is_test=True)
test_loader = FakeNewsDataLoader(dataset=test_dataset, max_seq_len=512, batch_size=args.per_gpu_eval_batch_size, num_workers=8, shuffle=False, is_test=True)
w2i, i2w = FakeNewsDataset.LABEL2INDEX, FakeNewsDataset.INDEX2LABEL
ans_path = re.sub(model_path.split('/')[-1], '', model_path)
test(args, model, test_loader, ans_path+'answer3.txt')
else:
test_dataset = FakeNewsDataset(tokenizer, dataset_path=test_dataset_path, lowercase=False)
test_loader = FakeNewsDataLoader(dataset=test_dataset, max_seq_len=512, batch_size=args.per_gpu_eval_batch_size, num_workers=8, shuffle=False)
w2i, i2w = FakeNewsDataset.LABEL2INDEX, FakeNewsDataset.INDEX2LABEL
ans_path = re.sub(model_path.split('/')[-1], '', model_path)
evaluate(args, model, test_loader, ans_path+'result.txt')