-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathGNSS_KF_Epoch.m
146 lines (120 loc) · 5.73 KB
/
GNSS_KF_Epoch.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function [x_est_new,P_matrix_new] = GNSS_KF_Epoch(GNSS_measurements,...
no_meas,tor_s,x_est_old,P_matrix_old,GNSS_KF_config)
%GNSS_KF_Epoch - Implements one cycle of the GNSS extended Kalman filter
%
% Software for use with "Principles of GNSS, Inertial, and Multisensor
% Integrated Navigation Systems," Second Edition.
%
% This function created 12/4/2012 by Paul Groves
%
% Inputs:
% GNSS_measurements GNSS measurement data:
% Column 1 Pseudo-range measurements (m)
% Column 2 Pseudo-range rate measurements (m/s)
% Columns 3-5 Satellite ECEF position (m)
% Columns 6-8 Satellite ECEF velocity (m/s)
% no_meas Number of satellites for which measurements are
% supplied
% tor_s propagation interval (s)
% x_est_old previous Kalman filter state estimates
% P_matrix_old previous Kalman filter error covariance matrix
% GNSS_KF_config
% .accel_PSD Acceleration PSD per axis (m^2/s^3)
% .clock_freq_PSD Receiver clock frequency-drift PSD (m^2/s^3)
% .clock_phase_PSD Receiver clock phase-drift PSD (m^2/s)
% .pseudo_range_SD Pseudo-range measurement noise SD (m)
% .range_rate_SD Pseudo-range rate measurement noise SD (m/s)
%
% Outputs:
% x_est_new updated Kalman filter state estimates
% Rows 1-3 estimated ECEF user position (m)
% Rows 4-6 estimated ECEF user velocity (m/s)
% Row 7 estimated receiver clock offset (m)
% Row 8 estimated receiver clock drift (m/s)
% P_matrix_new updated Kalman filter error covariance matrix
% Copyright 2012, Paul Groves
% License: BSD; see license.txt for details
% Constants (sone of these could be changed to inputs at a later date)
c = 299792458; % Speed of light in m/s
omega_ie = 7.292115E-5; % Earth rotation rate in rad/s
% Begins
% SYSTEM PROPAGATION PHASE
% 1. Determine transition matrix using (9.147) and (9.150)
Phi_matrix = eye(8);
Phi_matrix(1,4) = tor_s;
Phi_matrix(2,5) = tor_s;
Phi_matrix(3,6) = tor_s;
Phi_matrix(7,8) = tor_s;
% 2. Determine system noise covariance matrix using (9.152)
Q_matrix = zeros(8);
Q_matrix(1:3,1:3) = eye(3) * GNSS_KF_config.accel_PSD * tor_s^3 / 3;
Q_matrix(1:3,4:6) = eye(3) * GNSS_KF_config.accel_PSD * tor_s^2 / 2;
Q_matrix(4:6,1:3) = eye(3) * GNSS_KF_config.accel_PSD * tor_s^2 / 2;
Q_matrix(4:6,4:6) = eye(3) * GNSS_KF_config.accel_PSD * tor_s;
Q_matrix(7,7) = (GNSS_KF_config.clock_freq_PSD * tor_s^3 / 3) +...
GNSS_KF_config.clock_phase_PSD * tor_s;
Q_matrix(7,8) = GNSS_KF_config.clock_freq_PSD * tor_s^2 / 2;
Q_matrix(8,7) = GNSS_KF_config.clock_freq_PSD * tor_s^2 / 2;
Q_matrix(8,8) = GNSS_KF_config.clock_freq_PSD * tor_s;
% 3. Propagate state estimates using (3.14)
x_est_propagated = Phi_matrix * x_est_old;
% 4. Propagate state estimation error covariance matrix using (3.15)
P_matrix_propagated = Phi_matrix * P_matrix_old * Phi_matrix' + Q_matrix;
% MEASUREMENT UPDATE PHASE
% Skew symmetric matrix of Earth rate
Omega_ie = Skew_symmetric([0,0,omega_ie]);
u_as_e_T = zeros(no_meas,3);
pred_meas = zeros(no_meas,2);
% Loop measurements
for j = 1:no_meas
% Predict approx range
delta_r = GNSS_measurements(j,3:5)' - x_est_propagated(1:3);
approx_range = sqrt(delta_r' * delta_r);
% Calculate frame rotation during signal transit time using (8.36)
C_e_I = [1, omega_ie * approx_range / c, 0;...
-omega_ie * approx_range / c, 1, 0;...
0, 0, 1];
% Predict pseudo-range using (9.165)
delta_r = C_e_I * GNSS_measurements(j,3:5)' - x_est_propagated(1:3);
range = sqrt(delta_r' * delta_r);
pred_meas(j,1) = range + x_est_propagated(7);
% Predict line of sight
u_as_e_T(j,1:3) = delta_r' / range;
% Predict pseudo-range rate using (9.165)
range_rate = u_as_e_T(j,1:3) * (C_e_I * (GNSS_measurements(j,6:8)' +...
Omega_ie * GNSS_measurements(j,3:5)') - (x_est_propagated(4:6) +...
Omega_ie * x_est_propagated(1:3)));
pred_meas(j,2) = range_rate + x_est_propagated(8);
end % for j
% 5. Set-up measurement matrix using (9.163)
H_matrix(1:no_meas,1:3) = -u_as_e_T(1:no_meas,1:3);
H_matrix(1:no_meas,4:6) = zeros(no_meas,3);
H_matrix(1:no_meas,7) = ones(no_meas,1);
H_matrix(1:no_meas,8) = zeros(no_meas,1);
H_matrix((no_meas + 1):(2 * no_meas),1:3) = zeros(no_meas,3);
H_matrix((no_meas + 1):(2 * no_meas),4:6) = -u_as_e_T(1:no_meas,1:3);
H_matrix((no_meas + 1):(2 * no_meas),7) = zeros(no_meas,1);
H_matrix((no_meas + 1):(2 * no_meas),8) = ones(no_meas,1);
% 6. Set-up measurement noise covariance matrix assuming all measurements
% are independent and have equal variance for a given measurement type
R_matrix(1:no_meas,1:no_meas) = eye(no_meas) *...
GNSS_KF_config.pseudo_range_SD^2;
R_matrix(1:no_meas,(no_meas + 1):(2 * no_meas)) =...
zeros(no_meas);
R_matrix((no_meas + 1):(2 * no_meas),1:no_meas) =...
zeros(no_meas);
R_matrix((no_meas + 1):(2 * no_meas),(no_meas + 1):(2 * no_meas)) =...
eye(no_meas) * GNSS_KF_config.range_rate_SD^2;
% 7. Calculate Kalman gain using (3.21)
K_matrix = P_matrix_propagated * H_matrix' * inv(H_matrix *...
P_matrix_propagated * H_matrix' + R_matrix);
% 8. Formulate measurement innovations using (3.88)
delta_z(1:no_meas,1) = GNSS_measurements(1:no_meas,1) -...
pred_meas(1:no_meas,1);
delta_z((no_meas + 1):(2 * no_meas),1) = GNSS_measurements(1:no_meas,2) -...
pred_meas(1:no_meas,2);
% 9. Update state estimates using (3.24)
x_est_new = x_est_propagated + K_matrix * delta_z;
% 10. Update state estimation error covariance matrix using (3.25)
P_matrix_new = (eye(8) - K_matrix * H_matrix) * P_matrix_propagated;
% Ends