-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathKinematics_NED.m
101 lines (87 loc) · 4.13 KB
/
Kinematics_NED.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function [f_ib_b,omega_ib_b] = Kinematics_NED(tor_i,C_b_n,old_C_b_n,...
v_eb_n,old_v_eb_n,L_b,h_b,old_L_b,old_h_b)
%Kinematics_NED - calculates specific force and angular rate from input
%w.r.t and resolved along north, east, and down
%
% Software for use with "Principles of GNSS, Inertial, and Multisensor
% Integrated Navigation Systems," Second Edition.
%
% This function created 1/4/2012 by Paul Groves
%
% Inputs:
% tor_i time interval between epochs (s)
% C_b_n body-to-NED coordinate transformation matrix
% old_C_b_n previous body-to-NED coordinate transformation matrix
% v_eb_n velocity of body frame w.r.t. ECEF frame, resolved along
% north, east, and down (m/s)
% old_v_eb_n previous velocity of body frame w.r.t. ECEF frame, resolved
% along north, east, and down (m/s)
% L_b latitude (rad)
% h_b height (m)
% old_L_b previous latitude (rad)
% old_h_b previous height (m)
% Outputs:
% f_ib_b specific force of body frame w.r.t. ECEF frame, resolved
% along body-frame axes, averaged over time interval (m/s^2)
% omega_ib_b angular rate of body frame w.r.t. ECEF frame, resolved
% about body-frame axes, averaged over time interval (rad/s)
% Copyright 2012, Paul Groves
% License: BSD; see license.txt for details
% Parameters
omega_ie = 7.292115E-5; % Earth rotation rate (rad/s)
% Begins
if tor_i > 0
% From (2.123) , determine the angular rate of the ECEF frame
% w.r.t the ECI frame, resolved about NED
omega_ie_n = omega_ie * [cos(old_L_b); 0; - sin(old_L_b)];
% From (5.44), determine the angular rate of the NED frame
% w.r.t the ECEF frame, resolved about NED
[old_R_N,old_R_E] = Radii_of_curvature(old_L_b);
[R_N,R_E] = Radii_of_curvature(L_b);
old_omega_en_n = [old_v_eb_n(2) / (old_R_E + old_h_b);...
-old_v_eb_n(1) / (old_R_N + old_h_b);...
-old_v_eb_n(2) * tan(old_L_b) / (old_R_E + old_h_b)];
omega_en_n = [v_eb_n(2) / (R_E + h_b);...
-v_eb_n(1) / (R_N + h_b);...
-v_eb_n(2) * tan(L_b) / (R_E + h_b)];
% Obtain coordinate transformation matrix from the old attitude (w.r.t.
% an inertial frame) to the new using (5.77)
C_old_new = C_b_n' * (eye(3) - Skew_symmetric(omega_ie_n + 0.5 *...
omega_en_n + 0.5 * old_omega_en_n) * tor_i) * old_C_b_n;
% Calculate the approximate angular rate w.r.t. an inertial frame
alpha_ib_b(1,1) = 0.5 * (C_old_new(2,3) - C_old_new(3,2));
alpha_ib_b(2,1) = 0.5 * (C_old_new(3,1) - C_old_new(1,3));
alpha_ib_b(3,1) = 0.5 * (C_old_new(1,2) - C_old_new(2,1));
% Calculate and apply the scaling factor
temp = acos(0.5 * (C_old_new(1,1) + C_old_new(2,2) + C_old_new(3,3)...
- 1.0));
if temp>2e-5 %scaling is 1 if temp is less than this
alpha_ib_b = alpha_ib_b * temp/sin(temp);
end %if temp
% Calculate the angular rate
omega_ib_b = alpha_ib_b / tor_i;
% Calculate the specific force resolved about ECEF-frame axes
% From (5.54),
f_ib_n = ((v_eb_n - old_v_eb_n) / tor_i) - Gravity_NED(old_L_b,old_h_b)...
+ Skew_symmetric(old_omega_en_n + 2 * omega_ie_n) * old_v_eb_n;
% Calculate the average body-to-NED coordinate transformation
% matrix over the update interval using (5.84) and (5.86)
mag_alpha = sqrt(alpha_ib_b' * alpha_ib_b);
Alpha_ib_b = Skew_symmetric(alpha_ib_b);
if mag_alpha>1.E-8
ave_C_b_n = old_C_b_n * (eye(3) + (1 - cos(mag_alpha)) /mag_alpha^2 ...
* Alpha_ib_b + (1 - sin(mag_alpha) / mag_alpha) / mag_alpha^2 ...
* Alpha_ib_b * Alpha_ib_b) -...
0.5 * Skew_symmetric(old_omega_en_n + omega_ie_n) * old_C_b_n;
else
ave_C_b_n = old_C_b_n -...
0.5 * Skew_symmetric(old_omega_en_n + omega_ie_n) * old_C_b_n;
end %if mag_alpha
% Transform specific force to body-frame resolving axes using (5.81)
f_ib_b = inv(ave_C_b_n) * f_ib_n;
else
% If time interval is zero, set angular rate and specific force to zero
omega_ib_b = [0;0;0];
f_ib_b = [0;0;0];
end %if tor_i
% Ends