-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathen_attack.py
executable file
·246 lines (209 loc) · 11.5 KB
/
en_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
## en_attack.py -- attack a network optimizing elastic-net distance with an en decision rule
##
## Copyright (C) 2017, Yash Sharma <[email protected]>.
## Copyright (C) 2016, Nicholas Carlini <[email protected]>.
##
## This program is licenced under the BSD 2-Clause licence,
## contained in the LICENCE file in this directory.
import sys
import tensorflow as tf
import numpy as np
BINARY_SEARCH_STEPS = 9 # number of times to adjust the constant with binary search
MAX_ITERATIONS = 10000 # number of iterations to perform gradient descent
ABORT_EARLY = True # if we stop improving, abort gradient descent early
LEARNING_RATE = 1e-2 # larger values converge faster to less accurate results
TARGETED = True # should we target one specific class? or just be wrong?
CONFIDENCE = 0 # how strong the adversarial example should be
INITIAL_CONST = 1e-3 # the initial constant c to pick as a first guess
BETA = 1e-3 # Hyperparameter trading off L2 minimization for L1 minimization
class EADEN:
def __init__(self, sess, model, batch_size=1, confidence = CONFIDENCE,
targeted = TARGETED, learning_rate = LEARNING_RATE,
binary_search_steps = BINARY_SEARCH_STEPS, max_iterations = MAX_ITERATIONS,
abort_early = ABORT_EARLY,
initial_const = INITIAL_CONST, beta = BETA):
"""
EAD with EN Decision Rule
Returns adversarial examples for the supplied model.
"""
image_size, num_channels, num_labels = model.image_size, model.num_channels, model.num_labels
self.sess = sess
self.TARGETED = targeted
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.BINARY_SEARCH_STEPS = binary_search_steps
self.ABORT_EARLY = abort_early
self.CONFIDENCE = confidence
self.initial_const = initial_const
self.batch_size = batch_size
self.beta = beta
self.beta_t = tf.cast(self.beta, tf.float32)
self.repeat = binary_search_steps >= 10
shape = (batch_size,image_size,image_size,num_channels)
# these are variables to be more efficient in sending data to tf
self.timg = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.newimg = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.slack = tf.Variable(np.zeros(shape), dtype=tf.float32)
self.tlab = tf.Variable(np.zeros((batch_size,num_labels)), dtype=tf.float32)
self.const = tf.Variable(np.zeros(batch_size), dtype=tf.float32)
# and here's what we use to assign them
self.assign_timg = tf.placeholder(tf.float32, shape)
self.assign_newimg = tf.placeholder(tf.float32, shape)
self.assign_slack = tf.placeholder(tf.float32, shape)
self.assign_tlab = tf.placeholder(tf.float32, (batch_size,num_labels))
self.assign_const = tf.placeholder(tf.float32, [batch_size])
self.global_step = tf.Variable(0, trainable=False)
self.global_step_t = tf.cast(self.global_step, tf.float32)
"""Fast Iterative Soft Thresholding"""
"""--------------------------------"""
self.zt = tf.divide(self.global_step_t, self.global_step_t+tf.cast(3, tf.float32))
cond1 = tf.cast(tf.greater(tf.subtract(self.slack, self.timg),self.beta_t), tf.float32)
cond2 = tf.cast(tf.less_equal(tf.abs(tf.subtract(self.slack,self.timg)),self.beta_t), tf.float32)
cond3 = tf.cast(tf.less(tf.subtract(self.slack, self.timg),tf.negative(self.beta_t)), tf.float32)
upper = tf.minimum(tf.subtract(self.slack,self.beta_t), tf.cast(0.5, tf.float32))
lower = tf.maximum(tf.add(self.slack,self.beta_t), tf.cast(-0.5, tf.float32))
self.assign_newimg = tf.multiply(cond1,upper)+tf.multiply(cond2,self.timg)+tf.multiply(cond3,lower)
self.assign_slack = self.assign_newimg+tf.multiply(self.zt, self.assign_newimg-self.newimg)
self.setter = tf.assign(self.newimg, self.assign_newimg)
self.setter_y = tf.assign(self.slack, self.assign_slack)
"""--------------------------------"""
# prediction BEFORE-SOFTMAX of the model
self.output = model.predict(self.newimg)
self.output_y = model.predict(self.slack)
# distance to the input data
self.l2dist = tf.reduce_sum(tf.square(self.newimg-self.timg),[1,2,3])
self.l2dist_y = tf.reduce_sum(tf.square(self.slack-self.timg),[1,2,3])
self.l1dist = tf.reduce_sum(tf.abs(self.newimg-self.timg),[1,2,3])
self.l1dist_y = tf.reduce_sum(tf.abs(self.slack-self.timg),[1,2,3])
self.elasticdist = self.l2dist + tf.multiply(self.l1dist, self.beta_t)
self.elasticdist_y = self.l2dist_y + tf.multiply(self.l1dist_y, self.beta_t)
# compute the probability of the label class versus the maximum other
real = tf.reduce_sum((self.tlab)*self.output,1)
real_y = tf.reduce_sum((self.tlab)*self.output_y,1)
other = tf.reduce_max((1-self.tlab)*self.output - (self.tlab*10000),1)
other_y = tf.reduce_max((1-self.tlab)*self.output_y - (self.tlab*10000),1)
if self.TARGETED:
# if targeted, optimize for making the other class most likely
loss1 = tf.maximum(0.0, other-real+self.CONFIDENCE)
loss1_y = tf.maximum(0.0, other_y-real_y+self.CONFIDENCE)
else:
# if untargeted, optimize for making this class least likely.
loss1 = tf.maximum(0.0, real-other+self.CONFIDENCE)
loss1_y = tf.maximum(0.0, real_y-other_y+self.CONFIDENCE)
# sum up the losses
self.loss21 = tf.reduce_sum(self.l1dist)
self.loss21_y = tf.reduce_sum(self.l1dist_y)
self.loss2 = tf.reduce_sum(self.l2dist)
self.loss2_y = tf.reduce_sum(self.l2dist_y)
self.loss1 = tf.reduce_sum(self.const*loss1)
self.loss1_y = tf.reduce_sum(self.const*loss1_y)
self.loss_opt = self.loss1_y+self.loss2_y
self.loss = self.loss1+self.loss2+tf.multiply(self.beta_t,self.loss21)
self.learning_rate = tf.train.polynomial_decay(self.LEARNING_RATE, self.global_step, self.MAX_ITERATIONS, 0, power=0.5)
start_vars = set(x.name for x in tf.global_variables())
optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
self.train = optimizer.minimize(self.loss_opt, var_list=[self.slack], global_step=self.global_step)
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.timg.assign(self.assign_timg))
self.setup.append(self.tlab.assign(self.assign_tlab))
self.setup.append(self.const.assign(self.assign_const))
self.init = tf.variables_initializer(var_list=[self.global_step]+[self.slack]+[self.newimg]+new_vars)
def attack(self, imgs, targets):
"""
Perform the EAD attack on the given images for the given targets.
If self.targeted is true, then the targets represents the target labels.
If self.targeted is false, then targets are the original class labels.
"""
r = []
print('go up to',len(imgs))
for i in range(0,len(imgs),self.batch_size):
print('tick',i)
r.extend(self.attack_batch(imgs[i:i+self.batch_size], targets[i:i+self.batch_size]))
return np.array(r)
def attack_batch(self, imgs, labs):
"""
Run the attack on a batch of images and labels.
"""
def compare(x,y):
if not isinstance(x, (float, int, np.int64)):
x = np.copy(x)
if self.TARGETED:
x[y] -= self.CONFIDENCE
else:
x[y] += self.CONFIDENCE
x = np.argmax(x)
if self.TARGETED:
return x == y
else:
return x != y
batch_size = self.batch_size
# set the lower and upper bounds accordingly
lower_bound = np.zeros(batch_size)
CONST = np.ones(batch_size)*self.initial_const
upper_bound = np.ones(batch_size)*1e10
# the best l2, score, and image attack
o_besten = [1e10]*batch_size
o_bestscore = [-1]*batch_size
o_bestattack = [np.zeros(imgs[0].shape)]*batch_size
for outer_step in range(self.BINARY_SEARCH_STEPS):
# completely reset adam's internal state.
self.sess.run(self.init)
batch = imgs[:batch_size]
batchlab = labs[:batch_size]
besten = [1e10]*batch_size
bestscore = [-1]*batch_size
# The last iteration (if we run many steps) repeat the search once.
if self.repeat == True and outer_step == self.BINARY_SEARCH_STEPS-1:
CONST = upper_bound
# set the variables so that we don't have to send them over again
self.sess.run(self.setup, {self.assign_timg: batch,
self.assign_tlab: batchlab,
self.assign_const: CONST})
self.sess.run(self.setter, feed_dict={self.assign_newimg: batch})
self.sess.run(self.setter_y, feed_dict={self.assign_slack: batch})
prev = 1e6
for iteration in range(self.MAX_ITERATIONS):
# perform the attack
self.sess.run([self.train])
self.sess.run([self.setter, self.setter_y])
l, l2s, l1s, elastic, scores, nimg = self.sess.run([self.loss, self.l2dist, self.l1dist, self.elasticdist, self.output, self.newimg])
# print out the losses every 10%
"""
if iteration%(self.MAX_ITERATIONS//10) == 0:
print(iteration,self.sess.run((self.loss,self.loss1,self.loss2,self.loss21)))
"""
# check if we should abort search if we're getting nowhere.
if self.ABORT_EARLY and iteration%(self.MAX_ITERATIONS//10) == 0:
if l > prev*.9999:
break
prev = l
# adjust the best result found so far
for e,(en,sc,ii) in enumerate(zip(elastic,scores,nimg)):
if en < besten[e] and compare(sc, np.argmax(batchlab[e])):
besten[e] = en
bestscore[e] = np.argmax(sc)
if en < o_besten[e] and compare(sc, np.argmax(batchlab[e])):
o_besten[e] = en
o_bestscore[e] = np.argmax(sc)
o_bestattack[e] = ii
# adjust the constant as needed
for e in range(batch_size):
if compare(bestscore[e], np.argmax(batchlab[e])) and bestscore[e] != -1:
# success, divide const by two
upper_bound[e] = min(upper_bound[e],CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e])/2
else:
# failure, either multiply by 10 if no solution found yet
# or do binary search with the known upper bound
lower_bound[e] = max(lower_bound[e],CONST[e])
if upper_bound[e] < 1e9:
CONST[e] = (lower_bound[e] + upper_bound[e])/2
else:
CONST[e] *= 10
# return the best solution found
o_besten = np.array(o_besten)
return o_bestattack