-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
executable file
·35 lines (31 loc) · 1.13 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import cv2
import os.path as osp
import torch.utils.data
class Dataset(torch.utils.data.Dataset):
'''
Class to load the dataset
'''
def __init__(self, data_dir, dataset, transform=None):
self.transform = transform
self.img_list = list()
self.msk_list = list()
with open(data_dir + dataset + '.txt', 'r') as lines:
for line in lines:
line_arr = line.split()
self.img_list.append(data_dir + line_arr[0].strip())
self.msk_list.append(data_dir + line_arr[1].strip())
def __len__(self):
return len(self.img_list)
def __getitem__(self, idx):
image = cv2.imread(self.img_list[idx])
label = cv2.imread(self.msk_list[idx], 0)
if self.transform:
try:
[image, label] = self.transform(image, label)
except AttributeError:
print(self.img_list[idx], self.msk_list[idx])
return image, label
def get_img_info(self, idx):
image = cv2.imread(self.img_list[idx])
return {"height": image.shape[0], "width": image.shape[1]}