-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
220 lines (176 loc) · 8.86 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-
"""
Created on Fri Oct 25 17:43:47 2019
@author: Administrator
"""
import torch
import torch.nn as nn
import torch.optim as optim
import os
import time
import dataset
import ext_scheduler
import dpamnet
import argparse
def train_model(model, dataloaders, criterion, optimizer, scheduler, device, save_filename, num_epochs=50):
since = time.time()
best_acc = 0.0
best_epoch = 0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
itera_loss = 0.0
itera_loss_d = 0.0
itera_corrects = [0.0, 0.0, 0.0, 0.0, 0.0]
itera_cnt = 0
batch_cnt = 0
time_load = 0
time_forward = 0
time_backward = 0
# Iterate over data.
a = time.time()
for inputs, labels in dataloaders[phase]:
labels_cpu = labels
inputs = inputs.to(device)
labels = labels.to(device)
b = time.time()
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
try:
outputs, loss_d = model(inputs, label=labels)
except:
print(inputs.size(), labels_cpu)
raise
loss_d = loss_d.mean()
loss = criterion(outputs, labels) + 0.001 * loss_d
c = time.time()
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
torch.cuda.synchronize()
d = time.time()
_, idx = torch.sort(outputs, 1, descending=True)
preds = []
for i in range(5):
preds.append(idx[:, i])
# statistics
itera_loss += loss.item() * inputs.size(0)
itera_loss_d += loss_d.item() * inputs.size(0)
for i in range(5):
itera_corrects[i] += torch.sum(preds[i] == labels.data).item()
itera_cnt += 1
batch_cnt += inputs.size(0)
if itera_cnt % 10 == 0:
print('.', end='', flush=True)
if itera_cnt % 100 == 0:
print('({}/{:.4f}/{:.4f})'.format(itera_cnt, itera_loss / batch_cnt, itera_loss_d / batch_cnt), end='', flush=True)
if phase == 'train':
with open(save_filename + '.loss.txt', mode='a') as f:
f.write('{:.4f} '.format(loss.item()))
time_load += b - a
time_forward += c - b
time_backward += d - c
a = time.time()
if itera_cnt == 0:
raise Exception('Not enough samples')
epoch_loss = itera_loss / batch_cnt
epoch_acc = [0.0, 0.0, 0.0, 0.0, 0.0]
for i in range(5):
epoch_acc[i] = itera_corrects[i] / batch_cnt
epoch_sum = '{} Loss: {:.4f} Rank1: {:.4f} Rank2: {:.4f} Rank3: {:.4f} Rank4: {:.4f} Rank5: {:.4f}'.format(
phase, epoch_loss,
epoch_acc[0],
epoch_acc[0] + epoch_acc[1],
epoch_acc[0] + epoch_acc[1] + epoch_acc[2],
epoch_acc[0] + epoch_acc[1] + epoch_acc[2] + epoch_acc[3],
epoch_acc[0] + epoch_acc[1] + epoch_acc[2] + epoch_acc[3] + epoch_acc[4])
epoch_tim = 'Load: {:.3f} Forward: {:.3f} Backward: {:.3f}'.format(
time_load / itera_cnt, time_forward / itera_cnt, time_backward / itera_cnt)
print()
print(epoch_sum)
print(epoch_tim)
with open(save_filename + '.iter.txt', mode='a') as f:
f.write('{} {}\n'.format(epoch_sum, epoch_tim))
# save the model
if phase == 'train':
if isinstance(scheduler, tuple):
for s in scheduler:
s.step(epoch=epoch)
else:
scheduler.step(epoch=epoch)
torch.save(model.state_dict(), save_filename)
if phase == 'val':
if epoch_acc[0] > best_acc:
best_acc = epoch_acc[0]
best_epoch = epoch
torch.save(model.state_dict(), save_filename.replace('.', '.best.', 1))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}, Best epoch: {}'.format(best_acc, best_epoch))
return model
def parse_args():
parser = argparse.ArgumentParser(description='Arguments for training',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--data_dir', type=str, default=R'H:\ModelNet40', help='Dataset directory')
parser.add_argument('--load_filename', type=str, default=None)
parser.add_argument('--save_filename', type=str, default='dpamnet1115.pt')
parser.add_argument('--rmap_filename', type=str, default=None, help='Remap file in loading checkpoint')
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_epochs', type=int, default=250)
parser.add_argument('--num_classes', type=int, default=40)
parser.add_argument('--point_num_max', type=int, default=1024)
return parser.parse_args()
if __name__=='__main__':
print('Pytorch version:', torch.__version__)
print('GPU available:', torch.cuda.device_count())
args = parse_args()
data_dir = args.data_dir
load_filename = args.load_filename
save_filename = args.save_filename
rmap_filename = args.rmap_filename
batch_size = args.batch_size
num_epochs = args.num_epochs
num_classes = args.num_classes
point_num_max = args.point_num_max
# Detect if we have a GPU available
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Create the model and send the model to GPU
model = dpamnet.DpamNet(num_classes=num_classes)
model = nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
model = model.to(device)
if load_filename is not None:
# Load the model from file
model_dict = model.state_dict()
saved_dict = torch.load(load_filename)
if rmap_filename is not None:
with open(rmap_filename, mode='r') as f:
loadmap = f.readlines()
for s in loadmap:
k = s.split()
saved_dict[k[1]] = saved_dict.pop(k[0])
model_dict.update(saved_dict)
model.load_state_dict(model_dict)
# Create training and validation datasets, as well as dataloaders
train_datasets = {x:dataset.BcDataset(os.path.join(data_dir, x), num_classes, point_num_max=point_num_max, use_transform=False) for x in ['train', 'val']}
train_dataloaders = {x:torch.utils.data.DataLoader(train_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, drop_last=True) for x in ['train', 'val']}
print('Num train/val:', len(train_datasets['train']), len(train_datasets['val']))
# Criterion, optimizer, and schedulers
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3, weight_decay=1e-4)
scheduler = (optim.lr_scheduler.LambdaLR(optimizer, last_epoch=-1,
lr_lambda=(lambda e: max(0.5 ** (int(e / 20)), 1e-3))),
ext_scheduler.BNMomentum(model, last_epoch=-1,
bn_lambda=(lambda e: max(0.5 * 0.5 ** (int(e / 20)), 1e-2))))
# Train and evaluate
model = train_model(model, train_dataloaders, criterion, optimizer, scheduler, device, save_filename=save_filename, num_epochs=num_epochs)