[TOC]
class Solution {
public:
bool isAnagram(string s, string t) {
if (s.size() != t.size()) return false;
unordered_map<char, int> umap;
for (auto ch : s) ++umap[ch];
for (auto ch : t) --umap[ch];
for (auto iter = umap.begin(); iter != umap.end(); ++iter) {
if (iter->second != 0) return false;
}
return true;
}
};
class Solution {
public:
vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
vector<int> res;
// special case
if (nums1.empty() || nums2.empty()) return res;
unordered_set<int> uset(nums1.begin(), nums1.end());
unordered_set<int> resSet;
for (auto num : nums2) {
if (uset.count(num) > 0) resSet.insert(num);
}
res.assign(resSet.begin(), resSet.end());
return res;
}
};
class Solution {
public:
bool isHappy(int n) {
// special case
if (n == 1) return true;
unordered_set<int> uset;
while (n != 1) {
if (uset.count(n) > 0) return false;
else uset.insert(n);
int sum = 0;
while (n) {
sum += pow(n % 10, 2);
n /= 10;
}
n = sum;
}
return true;
}
};
class Solution {
public:
vector<int> twoSum(vector<int>& nums, int target) {
// special case
if (nums.empty()) return {};
unordered_map<int, int> umap;
for (int i = 0; i != nums.size(); ++i) {
if (umap.count(target - nums[i]) > 0) return {i, umap[target - nums[i]]};
else umap[nums[i]] = i;
}
return {};
}
};
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
unordered_map<int, int> umap;
for (auto num1 : nums1)
for (auto num2 : nums2)
++umap[num1 + num2];
int res = 0;
for (auto num3 : nums3) {
for (auto num4 : nums4) {
if (umap.count(0 - (num3 + num4)) > 0) {
res += umap[0 - (num3 + num4)];
}
}
}
return res;
}
};
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
// special case
if (ransomNote.empty() && magazine.empty()) return true;
else if (ransomNote.empty() || magazine.empty()) return false;
unordered_map<char, int> umap;
for (auto ch : magazine) {
++umap[ch];
}
for (auto ch : ransomNote) {
--umap[ch];
}
for (auto iter : umap) {
if (iter.second < 0) return false;
}
return true;
}
};
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
// special case
if (nums.size() < 3) return {};
vector<vector<int>> res;
sort(nums.begin(), nums.end());
// 找出 a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i != nums.size(); ++i) {
if (nums[i] > 0) return res;
// 错误去重方法,将会漏掉 -1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (left < right) {
if (nums[i] + nums[left] + nums[right] > 0) {
while (left < right && nums[right - 1] == nums[right]) --right;
--right;
} else if (nums[i] + nums[left] + nums[right] < 0) {
while (left < right && nums[left + 1] == nums[left]) ++left;
++left;
} else {
res.push_back({nums[i], nums[left], nums[right]});
while (left < right && nums[right - 1] == nums[right]) --right;
while (left < right && nums[left + 1] == nums[left]) ++left;
--right;
++left;
}
}
}
return res;
}
};
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 这种剪枝是错误的,这道题目target 是任意值
// if (nums[k] > target) {
// return result;
// }
// 去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 正确去重方法
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if (nums[k] + nums[i] > target - (nums[left] + nums[right])) {
right--;
} else if (nums[k] + nums[i] < target - (nums[left] + nums[right])) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个四元组之后
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};