-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathzaf.py
1484 lines (1187 loc) · 55.6 KB
/
zaf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
This Python module implements a number of functions for audio signal analysis.
Functions:
stft - Compute the short-time Fourier transform (STFT).
istft - Compute the inverse STFT.
melfilterbank - Compute the mel filterbank.
melspectrogram - Compute the mel spectrogram using a mel filterbank.
mfcc - Compute the mel-frequency cepstral coefficients (MFCCs) using a mel filterbank.
cqtkernel - Compute the constant-Q transform (CQT) kernel.
cqtspectrogram - Compute the CQT spectrogram using a CQT kernel.
cqtchromagram - Compute the CQT chromagram using a CQT kernel.
dct - Compute the discrete cosine transform (DCT) using the fast Fourier transform (FFT).
dst - Compute the discrete sine transform (DST) using the FFT.
mdct - Compute the modified discrete cosine transform (MDCT) using the FFT.
imdct - Compute the inverse MDCT using the FFT.
Other:
wavread - Read a WAVE file (using SciPy).
wavwrite - Write a WAVE file (using SciPy).
sigplot - Plot a signal in seconds.
specshow - Display an spectrogram in dB, seconds, and Hz.
melspecshow - Display a mel spectrogram in dB, seconds, and Hz.
mfccshow - Display MFCCs in seconds.
cqtspecshow - Display a CQT spectrogram in dB, seconds, and Hz.
cqtchromshow - Display a CQT chromagram in seconds.
Author:
Zafar Rafii
http://zafarrafii.com
https://github.com/zafarrafii
https://www.linkedin.com/in/zafarrafii/
08/24/21
"""
import numpy as np
import scipy.sparse
import scipy.signal
import scipy.fftpack
import scipy.io.wavfile
import matplotlib.pyplot as plt
def stft(audio_signal, window_function, step_length):
"""
Compute the short-time Fourier transform (STFT).
Inputs:
audio_signal: audio signal (number_samples,)
window_function: window function (window_length,)
step_length: step length in samples
Output:
audio_stft: audio STFT (window_length, number_frames)
Example: Compute and display the spectrogram from an audio file.
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Set the window duration in seconds (audio is stationary around 40 milliseconds)
window_duration = 0.04
# Derive the window length in samples (use powers of 2 for faster FFT and constant overlap-add (COLA))
window_length = pow(2, int(np.ceil(np.log2(window_duration*sampling_frequency))))
# Compute the window function (use SciPy's periodic Hamming window for COLA as NumPy's Hamming window is symmetric)
window_function = scipy.signal.hamming(window_length, sym=False)
# Set the step length in samples (half of the window length for COLA)
step_length = int(window_length/2)
# Compute the STFT
audio_stft = zaf.stft(audio_signal, window_function, step_length)
# Derive the magnitude spectrogram (without the DC component and the mirrored frequencies)
audio_spectrogram = np.absolute(audio_stft[1:int(window_length/2)+1, :])
# Display the spectrogram in dB, seconds, and Hz
number_samples = len(audio_signal)
plt.figure(figsize=(14, 7))
zaf.specshow(audio_spectrogram, number_samples, sampling_frequency, xtick_step=1, ytick_step=1000)
plt.title("Spectrogram (dB)")
plt.tight_layout()
plt.show()
"""
# Get the number of samples and the window length in samples
number_samples = len(audio_signal)
window_length = len(window_function)
# Derive the zero-padding length at the start and at the end of the signal to center the windows
padding_length = int(np.floor(window_length / 2))
# Compute the number of time frames given the zero-padding at the start and at the end of the signal
number_times = (
int(
np.ceil(
((number_samples + 2 * padding_length) - window_length) / step_length
)
)
+ 1
)
# Zero-pad the start and the end of the signal to center the windows
audio_signal = np.pad(
audio_signal,
(
padding_length,
(
number_times * step_length
+ (window_length - step_length)
- padding_length
)
- number_samples,
),
"constant",
constant_values=0,
)
# Initialize the STFT
audio_stft = np.zeros((window_length, number_times))
# Loop over the time frames
i = 0
for j in range(number_times):
# Window the signal
audio_stft[:, j] = audio_signal[i : i + window_length] * window_function
i = i + step_length
# Compute the Fourier transform of the frames using the FFT
audio_stft = np.fft.fft(audio_stft, axis=0)
return audio_stft
def istft(audio_stft, window_function, step_length):
"""
Compute the inverse short-time Fourier transform (STFT).
Inputs:
audio_stft: audio STFT (window_length, number_frames)
window_function: window function (window_length,)
step_length: step length in samples
Output:
audio_signal: audio signal (number_samples,)
Example: Estimate the center and the sides from a stereo audio file.
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the (stereo) audio signal with its sampling frequency in Hz
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
# Set the parameters for the STFT
window_length = pow(2, int(np.ceil(np.log2(0.04*sampling_frequency))))
window_function = scipy.signal.hamming(window_length, sym=False)
step_length = int(window_length/2)
# Compute the STFTs for the left and right channels
audio_stft1 = zaf.stft(audio_signal[:, 0], window_function, step_length)
audio_stft2 = zaf.stft(audio_signal[:, 1], window_function, step_length)
# Derive the magnitude spectrograms (with DC component) for the left and right channels
number_frequencies = int(window_length/2)+1
audio_spectrogram1 = abs(audio_stft1[0:number_frequencies, :])
audio_spectrogram2 = abs(audio_stft2[0:number_frequencies, :])
# Estimate the time-frequency masks for the left and right channels for the center
center_mask1 = np.minimum(audio_spectrogram1, audio_spectrogram2)/audio_spectrogram1
center_mask2 = np.minimum(audio_spectrogram1, audio_spectrogram2)/audio_spectrogram2
# Derive the STFTs for the left and right channels for the center (with mirrored frequencies)
center_stft1 = np.multiply(np.concatenate((center_mask1, center_mask1[-2:0:-1, :])), audio_stft1)
center_stft2 = np.multiply(np.concatenate((center_mask2, center_mask2[-2:0:-1, :])), audio_stft2)
# Synthesize the signals for the left and right channels for the center
center_signal1 = zaf.istft(center_stft1, window_function, step_length)
center_signal2 = zaf.istft(center_stft2, window_function, step_length)
# Derive the final stereo center and sides signals
center_signal = np.stack((center_signal1, center_signal2), axis=1)
center_signal = center_signal[0:np.shape(audio_signal)[0], :]
sides_signal = audio_signal-center_signal
# Write the center and sides signals
zaf.wavwrite(center_signal, sampling_frequency, "center_file.wav")
zaf.wavwrite(sides_signal, sampling_frequency, "sides_file.wav")
# Display the original, center, and sides signals in seconds
xtick_step = 1
plt.figure(figsize=(14, 7))
plt.subplot(3, 1, 1), zaf.sigplot(audio_signal, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Original signal")
plt.subplot(3, 1, 2), zaf.sigplot(center_signal, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Center signal")
plt.subplot(3, 1, 3), zaf.sigplot(sides_signal, sampling_frequency, xtick_step)
plt.ylim(-1, 1), plt.title("Sides signal")
plt.tight_layout()
plt.show()
"""
# Get the window length in samples and the number of time frames
window_length, number_times = np.shape(audio_stft)
# Compute the number of samples for the signal
number_samples = number_times * step_length + (window_length - step_length)
# Initialize the signal
audio_signal = np.zeros(number_samples)
# Compute the inverse Fourier transform of the frames and take the real part to ensure real values
audio_stft = np.real(np.fft.ifft(audio_stft, axis=0))
# Loop over the time frames
i = 0
for j in range(number_times):
# Perform a constant overlap-add (COLA) of the signal (with proper window function and step length)
audio_signal[i : i + window_length] = (
audio_signal[i : i + window_length] + audio_stft[:, j]
)
i = i + step_length
# Remove the zero-padding at the start and at the end of the signal
audio_signal = audio_signal[
window_length - step_length : number_samples - (window_length - step_length)
]
# Normalize the signal by the gain introduced by the COLA (if any)
audio_signal = audio_signal / sum(window_function[0:window_length:step_length])
return audio_signal
def melfilterbank(sampling_frequency, window_length, number_filters):
"""
Compute the mel filterbank.
Inputs:
sampling_frequency: sampling frequency in Hz
window_length: window length for the Fourier analysis in samples
number_mels: number of mel filters
Output:
mel_filterbank: mel filterbank (sparse) (number_mels, number_frequencies)
Example: Compute and display the mel filterbank.
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Compute the mel filterbank using some parameters
sampling_frequency = 44100
window_length = pow(2, int(np.ceil(np.log2(0.04 * sampling_frequency))))
number_mels = 128
mel_filterbank = zaf.melfilterbank(sampling_frequency, window_length, number_mels)
# Display the mel filterbank
plt.figure(figsize=(14, 5))
plt.imshow(mel_filterbank.toarray(), aspect="auto", cmap="jet", origin="lower")
plt.title("Mel filterbank")
plt.xlabel("Frequency index")
plt.ylabel("Mel index")
plt.tight_layout()
plt.show()
"""
# Compute the minimum and maximum mels
minimum_mel = 2595 * np.log10(1 + (sampling_frequency / window_length) / 700)
maximum_mel = 2595 * np.log10(1 + (sampling_frequency / 2) / 700)
# Derive the width of the half-overlapping filters in the mel scale (constant)
filter_width = 2 * (maximum_mel - minimum_mel) / (number_filters + 1)
# Compute the start and end indices of the filters in the mel scale (linearly spaced)
filter_indices = np.arange(minimum_mel, maximum_mel + 1, filter_width / 2)
# Derive the indices of the filters in the linear frequency scale (log spaced)
filter_indices = np.round(
700
* (np.power(10, filter_indices / 2595) - 1)
* window_length
/ sampling_frequency
).astype(int)
# Initialize the mel filterbank
mel_filterbank = np.zeros((number_filters, int(window_length / 2)))
# Loop over the filters
for i in range(number_filters):
# Compute the left and right sides of the triangular filters
# (this is more accurate than creating triangular filters directly)
mel_filterbank[i, filter_indices[i] - 1 : filter_indices[i + 1]] = np.linspace(
0,
1,
num=filter_indices[i + 1] - filter_indices[i] + 1,
)
mel_filterbank[
i, filter_indices[i + 1] - 1 : filter_indices[i + 2]
] = np.linspace(
1,
0,
num=filter_indices[i + 2] - filter_indices[i + 1] + 1,
)
# Make the mel filterbank sparse by saving it as a compressed sparse row matrix
mel_filterbank = scipy.sparse.csr_matrix(mel_filterbank)
return mel_filterbank
def melspectrogram(audio_signal, window_function, step_length, mel_filterbank):
"""
Compute the mel spectrogram using a mel filterbank.
Inputs:
audio_signal: audio signal (number_samples,)
window_function: window function (window_length,)
step_length: step length in samples
mel_filterbank: mel filterbank (number_mels, number_frequencies)
Output:
mel_spectrogram: mel spectrogram (number_mels, number_times)
Example: Compute and display the mel spectrogram.
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Set the parameters for the Fourier analysis
window_length = pow(2, int(np.ceil(np.log2(0.04*sampling_frequency))))
window_function = scipy.signal.hamming(window_length, sym=False)
step_length = int(window_length/2)
# Compute the mel filterbank
number_mels = 128
mel_filterbank = zaf.melfilterbank(sampling_frequency, window_length, number_mels)
# Compute the mel spectrogram using the filterbank
mel_spectrogram = zaf.melspectrogram(audio_signal, window_function, step_length, mel_filterbank)
# Display the mel spectrogram in dB, seconds, and Hz
number_samples = len(audio_signal)
plt.figure(figsize=(14, 5))
zaf.melspecshow(mel_spectrogram, number_samples, sampling_frequency, window_length, xtick_step=1)
plt.title("Mel spectrogram (dB)")
plt.tight_layout()
plt.show()
"""
# Compute the magnitude spectrogram (without the DC component and the mirrored frequencies)
audio_stft = stft(audio_signal, window_function, step_length)
audio_spectrogram = abs(audio_stft[1 : int(len(window_function) / 2) + 1, :])
# Compute the mel spectrogram by using the filterbank
mel_spectrogram = np.matmul(mel_filterbank.toarray(), audio_spectrogram)
return mel_spectrogram
def mfcc(
audio_signal, window_function, step_length, mel_filterbank, number_coefficients
):
"""
Compute the mel-frequency cepstral coefficients (MFCCs) using a mel filterbank.
Inputs:
audio_signal: audio signal (number_samples,)
window_function: window function (window_length,)
step_length: step length in samples
mel_filterbank: mel filterbank (number_mels, number_frequencies)
number_coefficients: number of coefficients (without the 0th coefficient)
Output:
audio_mfcc: audio MFCCs (number_coefficients, number_times)
Example: Compute and display the MFCCs, delta MFCCs, and delta-delta MFCCs.
# Import the needed modules
import numpy as np
import scipy.signal
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Set the parameters for the Fourier analysis
window_length = pow(2, int(np.ceil(np.log2(0.04*sampling_frequency))))
window_function = scipy.signal.hamming(window_length, sym=False)
step_length = int(window_length/2)
# Compute the mel filterbank
number_mels = 40
mel_filterbank = zaf.melfilterbank(sampling_frequency, window_length, number_mels)
# Compute the MFCCs using the filterbank
number_coefficients = 20
audio_mfcc = zaf.mfcc(audio_signal, window_function, step_length, mel_filterbank, number_coefficients)
# Compute the delta and delta-delta MFCCs
audio_dmfcc = np.diff(audio_mfcc, n=1, axis=1)
audio_ddmfcc = np.diff(audio_dmfcc, n=1, axis=1)
# Display the MFCCs, delta MFCCs, and delta-delta MFCCs in seconds
number_samples = len(audio_signal)
xtick_step = 1
plt.figure(figsize=(14, 7))
plt.subplot(3, 1, 1)
zaf.mfccshow(audio_mfcc, number_samples, sampling_frequency, xtick_step), plt.title("MFCCs")
plt.subplot(3, 1, 2)
zaf.mfccshow(audio_dmfcc, number_samples, sampling_frequency, xtick_step), plt.title("Delta MFCCs")
plt.subplot(3, 1, 3)
zaf.mfccshow(audio_ddmfcc, number_samples, sampling_frequency, xtick_step), plt.title("Delta-delta MFCCs")
plt.tight_layout()
plt.show()
"""
# Compute the power spectrogram (without the DC component and the mirrored frequencies)
audio_stft = stft(audio_signal, window_function, step_length)
audio_spectrogram = np.power(
abs(audio_stft[1 : int(len(window_function) / 2) + 1, :]), 2
)
# Compute the discrete cosine transform of the log magnitude spectrogram
# mapped onto the mel scale using the filter bank
audio_mfcc = scipy.fftpack.dct(
np.log(
np.matmul(mel_filterbank.toarray(), audio_spectrogram) + np.finfo(float).eps
),
axis=0,
norm="ortho",
)
# Keep only the first coefficients (without the 0th)
audio_mfcc = audio_mfcc[1 : number_coefficients + 1, :]
return audio_mfcc
def cqtkernel(
sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency
):
"""
Compute the constant-Q transform (CQT) kernel.
Inputs:
sampling_frequency: sampling frequency in Hz
octave_resolution: number of frequency channels per octave
minimum_frequency: minimum frequency in Hz
maximum_frequency: maximum frequency in Hz
Output:
cqt_kernel: CQT kernel (sparse) (number_frequencies, fft_length)
Example: Compute and display a CQT kernel.
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Set the parameters for the CQT kernel
sampling_frequency = 44100
octave_resolution = 24
minimum_frequency = 55
maximum_frequency = sampling_frequency/2
# Compute the CQT kernel
cqt_kernel = zaf.cqtkernel(sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency)
# Display the magnitude CQT kernel
plt.figure(figsize=(14, 5))
plt.imshow(np.absolute(cqt_kernel).toarray(), aspect="auto", cmap="jet", origin="lower")
plt.title("Magnitude CQT kernel")
plt.xlabel("FFT index")
plt.ylabel("CQT index")
plt.tight_layout()
plt.show()
"""
# Compute the constant ratio of frequency to resolution (= fk/(fk+1-fk))
quality_factor = 1 / (pow(2, 1 / octave_resolution) - 1)
# Compute the number of frequency channels for the CQT
number_frequencies = round(
octave_resolution * np.log2(maximum_frequency / minimum_frequency)
)
# Compute the window length for the FFT (= longest window for the minimum frequency)
fft_length = int(
pow(
2, np.ceil(np.log2(quality_factor * sampling_frequency / minimum_frequency))
)
)
# Initialize the (complex) CQT kernel
cqt_kernel = np.zeros((number_frequencies, fft_length), dtype=complex)
# Loop over the frequency channels
for i in range(number_frequencies):
# Derive the frequency value in Hz
frequency_value = minimum_frequency * pow(2, i / octave_resolution)
# Compute the window length in samples (nearest odd value to center the temporal kernel on 0)
window_length = (
2 * round(quality_factor * sampling_frequency / frequency_value / 2) + 1
)
# Compute the temporal kernel for the current frequency (odd and symmetric)
temporal_kernel = (
np.hamming(window_length)
* np.exp(
2
* np.pi
* 1j
* quality_factor
* np.arange(-(window_length - 1) / 2, (window_length - 1) / 2 + 1)
/ window_length
)
/ window_length
)
# Derive the pad width to center the temporal kernels
pad_width = int((fft_length - window_length + 1) / 2)
# Save the current temporal kernel at the center
# (the zero-padded temporal kernels are not perfectly symmetric anymore because of the even length here)
cqt_kernel[i, pad_width : pad_width + window_length] = temporal_kernel
# Derive the spectral kernels by taking the FFT of the temporal kernels
# (the spectral kernels are almost real because the temporal kernels are almost symmetric)
cqt_kernel = np.fft.fft(cqt_kernel, axis=1)
# Make the CQT kernel sparser by zeroing magnitudes below a threshold
cqt_kernel[np.absolute(cqt_kernel) < 0.01] = 0
# Make the CQT kernel sparse by saving it as a compressed sparse row matrix
cqt_kernel = scipy.sparse.csr_matrix(cqt_kernel)
# Get the final CQT kernel by using Parseval's theorem
cqt_kernel = np.conjugate(cqt_kernel) / fft_length
return cqt_kernel
def cqtspectrogram(audio_signal, sampling_frequency, time_resolution, cqt_kernel):
"""
Compute the constant-Q transform (CQT) spectrogram using a CQT kernel.
Inputs:
audio_signal: audio signal (number_samples,)
sampling_frequency: sampling frequency in Hz
time_resolution: number of time frames per second
cqt_kernel: CQT kernel (number_frequencies, fft_length)
Output:
cqt_spectrogram: CQT spectrogram (number_frequencies, number_times)
Example: Compute and display the CQT spectrogram.
# Import the modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Compute the CQT kernel
octave_resolution = 24
minimum_frequency = 55
maximum_frequency = 3520
cqt_kernel = zaf.cqtkernel(sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency)
# Compute the CQT spectrogram using the kernel
time_resolution = 25
cqt_spectrogram = zaf.cqtspectrogram(audio_signal, sampling_frequency, time_resolution, cqt_kernel)
# Display the CQT spectrogram in dB, seconds, and Hz
plt.figure(figsize=(14, 5))
zaf.cqtspecshow(cqt_spectrogram, time_resolution, octave_resolution, minimum_frequency, xtick_step=1)
plt.title("CQT spectrogram (dB)")
plt.tight_layout()
plt.show()
"""
# Derive the number of time samples per time frame
step_length = round(sampling_frequency / time_resolution)
# Compute the number of time frames
number_times = int(np.floor(len(audio_signal) / step_length))
# Get th number of frequency channels and the FFT length
number_frequencies, fft_length = np.shape(cqt_kernel)
# Zero-pad the signal to center the CQT
audio_signal = np.pad(
audio_signal,
(
int(np.ceil((fft_length - step_length) / 2)),
int(np.floor((fft_length - step_length) / 2)),
),
"constant",
constant_values=(0, 0),
)
# Initialize the CQT spectrogram
cqt_spectrogram = np.zeros((number_frequencies, number_times))
# Loop over the time frames
i = 0
for j in range(number_times):
# Compute the magnitude CQT using the kernel
cqt_spectrogram[:, j] = np.absolute(
cqt_kernel * np.fft.fft(audio_signal[i : i + fft_length])
)
i = i + step_length
return cqt_spectrogram
def cqtchromagram(
audio_signal, sampling_frequency, time_resolution, octave_resolution, cqt_kernel
):
"""
Compute the constant-Q transform (CQT) chromagram using a CQT kernel.
Inputs:
audio_signal: audio signal (number_samples,)
sampling_frequency: sampling frequency in Hz
time_resolution: number of time frames per second
octave_resolution: number of frequency channels per octave
cqt_kernel: CQT kernel (number_frequencies, fft_length)
Output:
cqt_chromagram: CQT chromagram (octave_resolution, number_times)
Example: Compute and display the CQT chromagram.
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Compute the CQT kernel
octave_resolution = 24
minimum_frequency = 55
maximum_frequency = 3520
cqt_kernel = zaf.cqtkernel(sampling_frequency, octave_resolution, minimum_frequency, maximum_frequency)
# Compute the CQT chromagram using the kernel
time_resolution = 25
cqt_chromagram = zaf.cqtchromagram(audio_signal, sampling_frequency, time_resolution, octave_resolution, cqt_kernel)
# Display the CQT chromagram in seconds
plt.figure(figsize=(14, 3))
zaf.cqtchromshow(cqt_chromagram, time_resolution, xtick_step=1)
plt.title("CQT chromagram")
plt.tight_layout()
plt.show()
"""
# Compute the CQT spectrogram
cqt_spectrogram = cqtspectrogram(
audio_signal, sampling_frequency, time_resolution, cqt_kernel
)
# Get the number of frequency channels and time frames
number_frequencies, number_times = np.shape(cqt_spectrogram)
# Initialize the CQT chromagram
cqt_chromagram = np.zeros((octave_resolution, number_times))
# Loop over the chroma channels
for i in range(octave_resolution):
# Sum the energy of the frequency channels for every chroma
cqt_chromagram[i, :] = np.sum(
cqt_spectrogram[i:number_frequencies:octave_resolution, :], axis=0
)
return cqt_chromagram
def dct(audio_signal, dct_type):
"""
Compute the discrete cosine transform (DCT) using the fast Fourier transform (FFT).
Inputs:
audio_signal: audio signal (window_length,)
dct_type: DCT type (1, 2, 3, or 4)
Output:
audio_dct: audio DCT (number_frequencies,)
Example: Compute the 4 different DCTs and compare them to SciPy's DCTs.
# Import the needed modules
import numpy as np
import zaf
import scipy.fftpack
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Get an audio segment for a given window length
window_length = 1024
audio_segment = audio_signal[0:window_length]
# Compute the DCT-I, II, III, and IV
audio_dct1 = zaf.dct(audio_segment, 1)
audio_dct2 = zaf.dct(audio_segment, 2)
audio_dct3 = zaf.dct(audio_segment, 3)
audio_dct4 = zaf.dct(audio_segment, 4)
# Compute SciPy's DCT-I, II, III, and IV (orthogonalized)
scipy_dct1 = scipy.fftpack.dct(audio_segment, type=1, norm="ortho")
scipy_dct2 = scipy.fftpack.dct(audio_segment, type=2, norm="ortho")
scipy_dct3 = scipy.fftpack.dct(audio_segment, type=3, norm="ortho")
scipy_dct4 = scipy.fftpack.dct(audio_segment, type=4, norm="ortho")
# Plot the DCT-I, II, III, and IV, SciPy's versions, and their differences
plt.figure(figsize=(14, 7))
plt.subplot(3, 4, 1), plt.plot(audio_dct1), plt.autoscale(tight=True), plt.title("DCT-I")
plt.subplot(3, 4, 2), plt.plot(audio_dct2), plt.autoscale(tight=True), plt.title("DCT-II")
plt.subplot(3, 4, 3), plt.plot(audio_dct3), plt.autoscale(tight=True), plt.title("DCT-III")
plt.subplot(3, 4, 4), plt.plot(audio_dct4), plt.autoscale(tight=True), plt.title("DCT-IV")
plt.subplot(3, 4, 5), plt.plot(scipy_dct1), plt.autoscale(tight=True), plt.title("SciPy's DCT-I")
plt.subplot(3, 4, 6), plt.plot(scipy_dct2), plt.autoscale(tight=True), plt.title("SciPy's DCT-II")
plt.subplot(3, 4, 7), plt.plot(scipy_dct3), plt.autoscale(tight=True), plt.title("SciPy's DCT-III")
plt.subplot(3, 4, 8), plt.plot(scipy_dct4), plt.autoscale(tight=True), plt.title("SciPy's DCT-IV")
plt.subplot(3, 4, 9), plt.plot(audio_dct1-scipy_dct1), plt.autoscale(tight=True), plt.title("DCT-I - SciPy's DCT-I")
plt.subplot(3, 4, 10), plt.plot(audio_dct2-scipy_dct2), plt.autoscale(tight=True), plt.title("DCT-II - SciPy's DCT-II")
plt.subplot(3, 4, 11), plt.plot(audio_dct3-scipy_dct3), plt.autoscale(tight=True), plt.title("DCT-III - SciPy's DCT-III")
plt.subplot(3, 4, 12), plt.plot(audio_dct3-scipy_dct3), plt.autoscale(tight=True), plt.title("DCT-IV - SciPy's DCT-IV")
plt.tight_layout()
plt.show()
"""
# Check if the DCT type is I, II, III, or IV
if dct_type == 1:
# Get the number of samples
window_length = len(audio_signal)
# Pre-process the signal to make the DCT-I matrix orthogonal
# (copy the signal to avoid modifying it outside of the function)
audio_signal = audio_signal.copy()
audio_signal[[0, -1]] = audio_signal[[0, -1]] * np.sqrt(2)
# Compute the DCT-I using the FFT
audio_dct = np.concatenate((audio_signal, audio_signal[-2:0:-1]))
audio_dct = np.fft.fft(audio_dct)
audio_dct = np.real(audio_dct[0:window_length]) / 2
# Post-process the results to make the DCT-I matrix orthogonal
audio_dct[[0, -1]] = audio_dct[[0, -1]] / np.sqrt(2)
audio_dct = audio_dct * np.sqrt(2 / (window_length - 1))
return audio_dct
elif dct_type == 2:
# Get the number of samples
window_length = len(audio_signal)
# Compute the DCT-II using the FFT
audio_dct = np.zeros(4 * window_length)
audio_dct[1 : 2 * window_length : 2] = audio_signal
audio_dct[2 * window_length + 1 : 4 * window_length : 2] = audio_signal[::-1]
audio_dct = np.fft.fft(audio_dct)
audio_dct = np.real(audio_dct[0:window_length]) / 2
# Post-process the results to make the DCT-II matrix orthogonal
audio_dct[0] = audio_dct[0] / np.sqrt(2)
audio_dct = audio_dct * np.sqrt(2 / window_length)
return audio_dct
elif dct_type == 3:
# Get the number of samples
window_length = len(audio_signal)
# Pre-process the signal to make the DCT-III matrix orthogonal
# (copy the signal to avoid modifying it outside of the function)
audio_signal = audio_signal.copy()
audio_signal[0] = audio_signal[0] * np.sqrt(2)
# Compute the DCT-III using the FFT
audio_dct = np.zeros(4 * window_length)
audio_dct[0:window_length] = audio_signal
audio_dct[window_length + 1 : 2 * window_length + 1] = -audio_signal[::-1]
audio_dct[2 * window_length + 1 : 3 * window_length] = -audio_signal[1:]
audio_dct[3 * window_length + 1 : 4 * window_length] = audio_signal[:0:-1]
audio_dct = np.fft.fft(audio_dct)
audio_dct = np.real(audio_dct[1 : 2 * window_length : 2]) / 4
# Post-process the results to make the DCT-III matrix orthogonal
audio_dct = audio_dct * np.sqrt(2 / window_length)
return audio_dct
elif dct_type == 4:
# Get the number of samples
window_length = len(audio_signal)
# Compute the DCT-IV using the FFT
audio_dct = np.zeros(8 * window_length)
audio_dct[1 : 2 * window_length : 2] = audio_signal
audio_dct[2 * window_length + 1 : 4 * window_length : 2] = -audio_signal[::-1]
audio_dct[4 * window_length + 1 : 6 * window_length : 2] = -audio_signal
audio_dct[6 * window_length + 1 : 8 * window_length : 2] = audio_signal[::-1]
audio_dct = np.fft.fft(audio_dct)
audio_dct = np.real(audio_dct[1 : 2 * window_length : 2]) / 4
# Post-process the results to make the DCT-IV matrix orthogonal
audio_dct = audio_dct * np.sqrt(2 / window_length)
return audio_dct
def dst(audio_signal, dst_type):
"""
Compute the discrete sine transform (DST) using the fast Fourier transform (FFT).
Inputs:
audio_signal: audio signal (window_length,)
dst_type: DST type (1, 2, 3, or 4)
Output:
audio_dst: audio DST (number_frequencies,)
Example: Compute the 4 different DSTs and compare their respective inverses with the original audio.
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels
audio_signal, sampling_frequency = zaf.wavread("audio_file.wav")
audio_signal = np.mean(audio_signal, 1)
# Get an audio segment for a given window length
window_length = 1024
audio_segment = audio_signal[0:window_length]
# Compute the DST-I, II, III, and IV
audio_dst1 = zaf.dst(audio_segment, 1)
audio_dst2 = zaf.dst(audio_segment, 2)
audio_dst3 = zaf.dst(audio_segment, 3)
audio_dst4 = zaf.dst(audio_segment, 4)
# Compute their respective inverses, i.e., DST-I, II, III, and IV
audio_idst1 = zaf.dst(audio_dst1, 1)
audio_idst2 = zaf.dst(audio_dst2, 3)
audio_idst3 = zaf.dst(audio_dst3, 2)
audio_idst4 = zaf.dst(audio_dst4, 4)
# Plot the DST-I, II, III, and IV, their respective inverses, and their differences with the original audio segment
plt.figure(figsize=(14, 7))
plt.subplot(3, 4, 1), plt.plot(audio_dst1), plt.autoscale(tight=True), plt.title("DCT-I")
plt.subplot(3, 4, 2), plt.plot(audio_dst2), plt.autoscale(tight=True), plt.title("DST-II")
plt.subplot(3, 4, 3), plt.plot(audio_dst3), plt.autoscale(tight=True), plt.title("DST-III")
plt.subplot(3, 4, 4), plt.plot(audio_dst4), plt.autoscale(tight=True), plt.title("DST-IV")
plt.subplot(3, 4, 5), plt.plot(audio_idst1), plt.autoscale(tight=True), plt.title("Inverse DST-I (DST-I)")
plt.subplot(3, 4, 6), plt.plot(audio_idst2), plt.autoscale(tight=True), plt.title("Inverse DST-II (DST-III)")
plt.subplot(3, 4, 7), plt.plot(audio_idst3), plt.autoscale(tight=True), plt.title("Inverse DST-III (DST-II)")
plt.subplot(3, 4, 8), plt.plot(audio_idst4), plt.autoscale(tight=True), plt.title("Inverse DST-IV (DST-IV)")
plt.subplot(3, 4, 9), plt.plot(audio_idst1-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-I - audio segment")
plt.subplot(3, 4, 10), plt.plot(audio_idst2-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-II - audio segment")
plt.subplot(3, 4, 11), plt.plot(audio_idst3-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-III - audio segment")
plt.subplot(3, 4, 12), plt.plot(audio_idst4-audio_segment), plt.autoscale(tight=True)
plt.title("Inverse DST-IV - audio segment")
plt.tight_layout()
plt.show()
"""
# Check if the DST type is I, II, III, or IV
if dst_type == 1:
# Get the number of samples
window_length = len(audio_signal)
# Compute the DST-I using the FFT
audio_dst = np.zeros(2 * window_length + 2)
audio_dst[1 : window_length + 1] = audio_signal
audio_dst[window_length + 2 :] = -audio_signal[::-1]
audio_dst = np.fft.fft(audio_dst)
audio_dst = -np.imag(audio_dst[1 : window_length + 1]) / 2
# Post-process the results to make the DST-I matrix orthogonal
audio_dst = audio_dst * np.sqrt(2 / (window_length + 1))
return audio_dst
elif dst_type == 2:
# Get the number of samples
window_length = len(audio_signal)
# Compute the DST-II using the FFT
audio_dst = np.zeros(4 * window_length)
audio_dst[1 : 2 * window_length : 2] = audio_signal
audio_dst[2 * window_length + 1 : 4 * window_length : 2] = -audio_signal[-1::-1]
audio_dst = np.fft.fft(audio_dst)
audio_dst = -np.imag(audio_dst[1 : window_length + 1]) / 2
# Post-process the results to make the DST-II matrix orthogonal
audio_dst[-1] = audio_dst[-1] / np.sqrt(2)
audio_dst = audio_dst * np.sqrt(2 / window_length)
return audio_dst
elif dst_type == 3:
# Get the number of samples
window_length = len(audio_signal)
# Pre-process the signal to make the DST-III matrix orthogonal
# (copy the signal to avoid modifying it outside of the function)
audio_signal = audio_signal.copy()
audio_signal[-1] = audio_signal[-1] * np.sqrt(2)
# Compute the DST-III using the FFT
audio_dst = np.zeros(4 * window_length)
audio_dst[1 : window_length + 1] = audio_signal
audio_dst[window_length + 1 : 2 * window_length] = audio_signal[-2::-1]
audio_dst[2 * window_length + 1 : 3 * window_length + 1] = -audio_signal
audio_dst[3 * window_length + 1 : 4 * window_length] = -audio_signal[-2::-1]
audio_dst = np.fft.fft(audio_dst)
audio_dst = -np.imag(audio_dst[1 : 2 * window_length : 2]) / 4
# Post-process the results to make the DST-III matrix orthogonal
audio_dst = audio_dst * np.sqrt(2 / window_length)
return audio_dst
elif dst_type == 4:
# Initialize the DST-IV
window_length = len(audio_signal)
audio_dst = np.zeros(8 * window_length)
# Compute the DST-IV using the FFT
audio_dst[1 : 2 * window_length : 2] = audio_signal
audio_dst[2 * window_length + 1 : 4 * window_length : 2] = audio_signal[
window_length - 1 :: -1
]
audio_dst[4 * window_length + 1 : 6 * window_length : 2] = -audio_signal
audio_dst[6 * window_length + 1 : 8 * window_length : 2] = -audio_signal[
window_length - 1 :: -1
]
audio_dst = np.fft.fft(audio_dst)
audio_dst = -np.imag(audio_dst[1 : 2 * window_length : 2]) / 4
# Post-process the results to make the DST-IV matrix orthogonal
audio_dst = audio_dst * np.sqrt(2 / window_length)
return audio_dst
def mdct(audio_signal, window_function):
"""
Compute the modified discrete cosine transform (MDCT) using the fast Fourier transform (FFT).
Inputs:
audio_signal: audio signal (number_samples,)
window_function: window function (window_length,)
Output:
audio_mdct: audio MDCT (number_frequencies, number_times)
Example: Compute and display the MDCT as used in the AC-3 audio coding format.
# Import the needed modules
import numpy as np
import zaf
import matplotlib.pyplot as plt
# Read the audio signal (normalized) with its sampling frequency in Hz, and average it over its channels