-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathisa.cpp
319 lines (293 loc) · 9.58 KB
/
isa.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#include "isa.hpp"
#include <iostream>
#include <cmath>
#include <stdexcept>
#include <string>
void error(const std::string& s){
throw std::runtime_error(s);
}
void error(const std::string& s1, const std::string& s2){
throw std::runtime_error(s1 + s2);
}
double gravitational_accel( double geometric_height){
double absolute_height = Earth::radius + geometric_height;
return Earth::surface_g_accel * (Earth::radius / absolute_height) * (Earth::radius / absolute_height);
}
double geopotential_height( double geometric_height ){
return (Earth::radius / (Earth::radius + geometric_height)) * geometric_height;
}
double isa_temperature( double geometric_height) {
Layer layer = get_layer(geometric_height);
switch(layer)
{
case Layer::isothermal_one:
return isa_isothermal_temperature(layer);
case Layer::isothermal_two:
return isa_isothermal_temperature(layer);
case Layer::isothermal_three:
return isa_isothermal_temperature(layer);
case Layer::gradient_one:
return isa_gradient_temperature(geometric_height, layer);
case Layer::gradient_two:
return isa_gradient_temperature(geometric_height, layer);
case Layer::gradient_three:
return isa_gradient_temperature(geometric_height, layer);
case Layer::gradient_four:
return isa_gradient_temperature(geometric_height, layer);
default:
break;
}
return 0; //just for compiler warnings
}
double isa_isothermal_temperature(Layer layer){
switch(layer)
{
case Layer::isothermal_one:
return Earth::Air::isothermal_layer_one_temperature;
case Layer::isothermal_two:
return Earth::Air::isothermal_layer_two_temperature;
case Layer::isothermal_three:
return Earth::Air::isothermal_layer_three_temperature;
default:
break;
}
return 0; // Just for compiler warnings
}
double isa_gradient_temperature(double geometric_height, Layer layer){
double T1;
double a;
double h = geopotential_height(geometric_height);
double h1;
switch(layer)
{
case Layer::gradient_one:
a = Earth::Air::lapse_rate_layer_one;
T1 = Earth::Air::layer_one_start_temperature;
h1 = Earth::Air::layer_one_start_height;
break;
case Layer::gradient_two:
a = Earth::Air::lapse_rate_layer_two;
T1 = Earth::Air::layer_two_start_temperature;
h1 = Earth::Air::layer_two_start_height;
break;
case Layer::gradient_three:
a = Earth::Air::lapse_rate_layer_three;
T1 = Earth::Air::layer_three_start_temperature;
h1 = Earth::Air::layer_three_start_height;
break;
case Layer::gradient_four:
a = Earth::Air::lapse_rate_layer_four;
T1 = Earth::Air::layer_four_start_temperature;
h1 = Earth::Air::layer_four_start_height;
break;
default:
break;
}
return T1 + ( a * (h - h1));
}
double isa_pressure(double geometric_height){
Layer layer = get_layer(geometric_height);
switch(layer)
{
case Layer::isothermal_one:
return isa_isothermal_pressure(geometric_height, layer);
case Layer::isothermal_two:
return isa_isothermal_pressure(geometric_height, layer);
case Layer::isothermal_three:
return isa_isothermal_pressure(geometric_height, layer);
case Layer::gradient_one:
return isa_gradient_pressure(geometric_height, layer);
case Layer::gradient_two:
return isa_gradient_pressure(geometric_height, layer);
case Layer::gradient_three:
return isa_gradient_pressure(geometric_height, layer);
case Layer::gradient_four:
return isa_gradient_pressure(geometric_height, layer);
default:
break;
}
return 0; // program execution will never reached this statement. Just for suppressing the compiler warning
}
// p / p1 = pow(e,(-g0/RT)(h-h1))
double isa_isothermal_pressure(double geometric_height, Layer layer){
double h = geopotential_height(geometric_height);
double T; // isothermal temperature
double h1; // isothermal layer start geopotential height
double p1; // isothermal layer start pressure
switch(layer)
{
case Layer::isothermal_one:
T = Earth::Air::isothermal_layer_one_temperature;
h1 = Earth::Air::layer_one_end_height;
p1 = Earth::Air::isothermal_one_start_pressure;
break;
case Layer::isothermal_two:
T = Earth::Air::isothermal_layer_two_temperature;
h1 = Earth::Air::layer_two_end_height;
p1 = Earth::Air::isothermal_two_start_pressure;
break;
case Layer::isothermal_three:
T = Earth::Air::isothermal_layer_three_temperature;
h1 = Earth::Air::layer_three_end_height;
p1 = Earth::Air::isothermal_three_start_pressure;
break;
default:
break;
}
return pow(Earth::Air::euler_number, ((-Earth::surface_g_accel / ( Earth::Air::perfect_gas_constant * T)) * (h - h1))) * p1;
}
double isa_gradient_pressure(double geometric_height, Layer layer){
double p1;
double T;
double T1;
double a;
switch(layer)
{
case Layer::gradient_one:
T1 = Earth::Air::sea_level_temperature;
T = isa_temperature(geometric_height);
a = Earth::Air::lapse_rate_layer_one;
p1 = Earth::Air::grad_one_start_pressure;
break;
case Layer::gradient_two:
T1 = Earth::Air::layer_two_start_temperature;
T = isa_temperature(geometric_height);
a = Earth::Air::lapse_rate_layer_two;
p1 = Earth::Air::grad_two_start_pressure;
break;
case Layer::gradient_three:
T1 = Earth::Air::layer_three_start_temperature;
T = isa_temperature(geometric_height);
a = Earth::Air::lapse_rate_layer_three;
p1 = Earth::Air::grad_three_start_pressure;
break;
case Layer::gradient_four:
T1 = Earth::Air::layer_four_start_temperature;
T = isa_temperature(geometric_height);
a = Earth::Air::lapse_rate_layer_four;
p1 = Earth::Air::grad_four_start_pressure;
break;
default:
break;
}
return pow(T / T1, (-Earth::surface_g_accel / (a * Earth::Air::perfect_gas_constant))) * p1;
}
Layer get_layer(double geometric_height){
double h = geopotential_height(geometric_height);
Layer layer;
int diff = 10;
using namespace Earth::Air;
if( h < (layer_one_end_height + 20))
{
layer = Layer::gradient_one;
}
else if( h > layer_one_end_height && h < (layer_two_start_height + diff))
{
layer = Layer::isothermal_one;
}
else if(h > layer_two_start_height && h < (layer_two_end_height + diff))
{
layer = Layer::gradient_two;
}
else if( h > layer_two_end_height && h < (layer_three_start_height + diff))
{
layer = Layer::isothermal_two;
}
else if( h > layer_three_start_height && h < ( layer_three_end_height + diff))
{
layer = Layer::gradient_three;
}
else if(h > layer_three_end_height && h < ( layer_four_start_height + diff))
{
layer = Layer::isothermal_three;
}
else if(h > layer_four_start_height && h < (layer_four_end_height + diff))
{
layer = Layer::gradient_four;
}
else
error("Unable to calculate at such height, maximum height is [105 x 10^3] meter geopotential altitude", std::to_string(h));
return layer;
}
double isa_density(double geometric_height){
Layer layer = get_layer(geometric_height);
switch(layer)
{
case Layer::isothermal_one:
return isa_isothermal_density(geometric_height, layer);
case Layer::isothermal_two:
return isa_isothermal_density(geometric_height, layer);
case Layer::isothermal_three:
return isa_isothermal_density(geometric_height, layer);
case Layer::gradient_one:
return isa_gradient_density(geometric_height, layer);
case Layer::gradient_two:
return isa_gradient_density(geometric_height, layer);
case Layer::gradient_three:
return isa_gradient_density(geometric_height, layer);
case Layer::gradient_four:
return isa_gradient_density(geometric_height, layer);
default:
break;
}
return 0; // program execution will never reached this statement. Just for suppressing the compiler warning
}
double isa_gradient_density(double geometric_height, Layer layer){
double T = isa_temperature(geometric_height); // current height temperature
double T1 = {}; // temperature at the start of thermal gradient
double rho1 = {}; // density at the start of thermal gradient
double a = {}; // lapse rate for thermal gradient
switch(layer)
{
case Layer::gradient_one:
T1 = Earth::Air::layer_one_start_temperature;
rho1 = Earth::Air::grad_one_start_density;
a = Earth::Air::lapse_rate_layer_one;
break;
case Layer::gradient_two:
T1 = Earth::Air::layer_two_start_temperature;
rho1 = Earth::Air::grad_two_start_density;
a = Earth::Air::lapse_rate_layer_two;
break;
case Layer::gradient_three:
T1 = Earth::Air::layer_three_start_temperature;
rho1 = Earth::Air::grad_three_start_density;
a = Earth::Air::lapse_rate_layer_three;
break;
case Layer::gradient_four:
T1 = Earth::Air::layer_four_start_temperature;
rho1 = Earth::Air::grad_four_start_density;
a = Earth::Air::lapse_rate_layer_four;
break;
default:
break;
}
return pow( T / T1 , -( (Earth::surface_g_accel / ( a * Earth::Air::perfect_gas_constant)) + 1 ) ) * rho1;
}
double isa_isothermal_density(double geometric_height, Layer layer){
double T = {}; // const temperature for isothermal region
double h = geopotential_height(geometric_height);
double h1 = {};
double rho1 = {};
switch(layer)
{
case Layer::isothermal_one:
T = Earth::Air::isothermal_layer_one_temperature;
h1 = Earth::Air::layer_one_end_height;
rho1 = Earth::Air::isothermal_one_start_density;
break;
case Layer::isothermal_two:
T = Earth::Air::isothermal_layer_two_temperature;
h1 = Earth::Air::layer_two_end_height;
rho1 = Earth::Air::isothermal_two_start_density;
break;
case Layer::isothermal_three:
T = Earth::Air::isothermal_layer_three_temperature;
h1 = Earth::Air::layer_three_end_height;
rho1 = Earth::Air::isothermal_three_start_density;
break;
default:
break;
}
return pow( Earth::Air::euler_number, ( (-Earth::surface_g_accel / (Earth::Air::perfect_gas_constant * T) )*(h - h1) ) ) * rho1;
}