forked from pannous/caffe-speech-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio-fft.py
executable file
·224 lines (196 loc) · 6.08 KB
/
audio-fft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
import pyaudio
# import wave
import subprocess
import re
import flask
import werkzeug
import optparse
import tornado.wsgi
import tornado.httpserver
from flask.ext.cors import CORS # Access-Control-Allow-Origin
import skimage.io
import json
import traceback
# import opencv2
import cv2
import cv
import numpy
import os
import sys
from os import system
from platform import system as platform
import skimage.io
winName="Server"
cv2.namedWindow(winName, cv.CV_WINDOW_FULLSCREEN)
if platform() == 'Darwin': # How Mac OS X is identified by Python
system('''/usr/bin/osascript -e 'tell app "Finder" to set frontmost of process "Python" to true' ''')
# Obtain the flask app object
app = flask.Flask(__name__)
cors = CORS(app)
i = 0
image=numpy.array(bytearray(os.urandom(512*512))) # 512,512)
image=image.reshape(512,512)
@app.route('/')
def index():
# return flask.render_template('index.html', has_result=False)
return flask.render_template_string('look')
@app.route('/classify_stream', methods=['POST'])
def classify_stream():
global image
global i
try:
data = flask.request.data # but data will be empty unless the request has the proper content-type header
if not data:
data = flask.request.form.keys()[0]
data = json.loads(data)["json"]
# data = bytearray(data)
image[i] = data
i = i+1
if(i==512):
i=0
cv2.imshow(winName,image)
return flask.render_template_string('OK')
except Exception as err:
traceback.print_exc(file=sys.stdout)
return flask.render_template_string(str(err))
@app.route('/classify_image', methods=['POST'])
def classify_image():
global i
try:
i=i+1
data = flask.request.data # but data will be empty unless the request has the proper content-type header
if not data:
data = flask.request.form.keys()[0]
image = json.loads(data)["json"]
image=numpy.array(image).astype(numpy.uint8)
# image=image.transpose()
cv2.imwrite('RandomGray%d.png'%i,image)
# cv2.imwrite('RandomGray%d.png'%i, image0, cv2.IMREAD_GRAYSCALE)
cv2.imshow(winName,image)
return flask.render_template_string('OK')
except Exception as err:
traceback.print_exc(file=sys.stdout)
return flask.render_template_string(str(err))
# if __name__ == '__main__':
# # image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# cv2.imwrite('RandomGray.png', image)
# cv2.imshow(winName,image )
import threading
class RecordThread(threading.Thread):
def run(self):
record()
import json
from json import dumps, loads, JSONEncoder, JSONDecoder
import pickle #json++
import urllib2
import wave
class PythonObjectEncoder(JSONEncoder):
def default(self, obj):
if isinstance(obj, (list, dict, str, unicode, int, float, bool, type(None))):
return JSONEncoder.default(self, obj)
return {'_python_object': pickle.dumps(obj)}
def as_python_object(dct):
if '_python_object' in dct:
return pickle.loads(str(dct['_python_object']))
return dct
import httplib
import urllib
def record():
global i
global image
global winName
FILENAME = 'recording.wav'
INDEX = 1
FORMAT = pyaudio.paInt16
# FORMAT = pyaudio.paInt8
CHANNELS = 1
RATE = 48000
# RATE = 22500
# INPUT_BLOCK_TIME = 0.05
INPUT_BLOCK_TIME = 0.1
INPUT_FRAMES_PER_BLOCK = int(RATE*INPUT_BLOCK_TIME)
# CHUNK = 512
# CHUNK = 1024
# CHUNK = 1024
# CHUNK = 2048
CHUNK = 4096
# CHUNK = 9192
# len=512
length=1024
# length=2048
# length = 4096
# step=32
step=64
# step=128
# step=256
stream = pyaudio.PyAudio().open(
format = FORMAT,
channels = CHANNELS,
rate = RATE,
input = True,
frames_per_buffer = CHUNK,
input_device_index = INDEX )
# r = numpy.array()
r = numpy.empty(length)
offset = 0
while True:
try:
dataraw = stream.read(CHUNK)
data0 = numpy.fromstring(dataraw, dtype='int16')
# data0 = numpy.fromstring(dataraw, dtype='int8')
if(i<20 and numpy.sum(data0)<1000):
continue
r=numpy.append(r,data0)
# Hamming window
# for(int i = 0; i < SEGMENTATION_LENGTH;i++){ timeDomain[i] = (float) (( 0.53836 - ( 0.46164 * Math.cos( TWOPI * (double)i / (double)( SEGMENTATION_LENGTH - 1 ) ) ) ) * frameBuffer[i]); }
# print r.size
while offset < r.size - length :
data = r[offset:offset+length]
offset=offset + step
data = numpy.fft.fft(data)#.abs()
data = numpy.absolute(data)
data = data[0:512]/256.0#.split(data,512)
data = numpy.log2(data*0.05+1.0)#//*50.0;
numpy.putmask(data, data > 255, 255)
image[i] = data
i = i+1
if(i==512):
i=0
# image=image.T
image=numpy.rot90(image)
cv2.imshow(winName,image)
result=upload(image)
p=re.compile("(\\d)")
result=p.search(result).group(1)
# subprocess.call(["say"," %s"%result])
# os.system("say %s"%result)
# subprocess.Popen("say"," %s"%result)
# cv2.imwrite('RandomGray%d.png'%i,image)
# if cv2.waitKey(10) == 27: BREAKS portAudio !!
# cv2.destroyWindow(winName)
# return 0
except IOError:
print 'todo: in threading'
except Exception as err:
print('Upload image error: %s' % err)
traceback.print_exc(file=sys.stdout)
def upload(image=None):
if image==None:
image_file="/me/ai/phonemes/5_Karen_260.wav.spec.png"
# image_file="/me/ai/phonemes/spoken_numbers/7_Karen_260.wav.spec.png"
image = skimage.io.imread(image_file).astype(numpy.uint8) #float32 BOTH OK!
post_data=json.dumps({'json':image.tolist()})
req = urllib2.Request('http://192.168.1.24:5000/classify_image', post_data)
response = urllib2.urlopen(req)
result = response.read()
print result
if __name__ == '__main__':
cv2.imshow(winName,image )
RecordThread().start()
# record()
# upload()
# transform_all()
# cv2.waitKey()
# app.run(debug=True, host='0.0.0.0', port=5000)
# app.run(debug=False, host='0.0.0.0', port=5000)