forked from pannous/caffe-speech-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognition-server.py
executable file
·291 lines (253 loc) · 9.59 KB
/
recognition-server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/usr/bin/env python
import os
import sys
import time
import logging
import flask
import werkzeug
import optparse
import tornado.wsgi
import tornado.httpserver
import numpy as np
import pandas as pd
from PIL import Image
from flask.ext.cors import CORS
import cStringIO as StringIO
import urllib
import skimage.io
import json
import traceback
# from skimage.color import rgb2gray
import caffe
REPO_DIRNAME = os.path.abspath(os.path.dirname(__file__) + '/..')
UPLOAD_FOLDER = '/tmp/caffe_demos_uploads'
# Obtain the flask app object
app = flask.Flask(__name__)
# allow other sites to post data to this service by our Ajax
cors = CORS(app)
@app.route('/')
def index():
return flask.render_template_string("please use recognition-server with record.py") # template('index.html', has_result=False)
@app.route('/record', methods=['GET'])
def record():
return flask.render_template('Recorder.html', has_result=False)
@app.route('/RecorderJS/<path:image_file>')
def static_proxy(image_file):
# send_static_file will guess the correct MIME type
return flask.send_from_directory('/me/caffe/python/templates/RecorderJS/', image_file)
# return app.send_static_file(os.path.join('/me/caffe/python/templates/RecorderJS/', path))
i = 0
buff = np.ndarray(shape=(512, 512), dtype=np.uint8)
@app.route('/classify_upload', methods=['POST'])
def classify_upload():
try:
# We will save the file to disk for possible data collection.
imagefile = flask.request.files['imagefile']
filename_ = str(datetime.datetime.now()).replace(' ', '_') + \
werkzeug.secure_filename(imagefile.filename)
filename = os.path.join(UPLOAD_FOLDER, filename_)
imagefile.save(filename)
logging.info('Saving to %s.', filename)
image = exifutil.open_oriented_im(filename)
except Exception as err:
logging.info('Error with uploaded image: %s', err)
return flask.render_template_string(('Cannot open uploaded image.')
)
result = app.clf.classify_image(image)
return flask.render_template_string(str(result))
@app.route('/classify_stream', methods=['POST'])
def classify_stream():
global i
try:
data = flask.request.data # but data will be empty unless the request has the proper content-type header
if not data:
data = flask.request.form.keys()[0]
data = json.loads(data)["json"]
# data = bytearray(data)
buff[i] = data
i = i+1
if i == 512:
i = 0
print "Classification ... "
image = buff[:, :, np.newaxis] / 255.
result = app.clf.classify_image(image)
return result[2]
return '...'
except Exception as err:
logging.info('Upload image error: %s', err)
traceback.print_exc(file=sys.stdout)
return 'Upload image error: %s' % err
nr = 0
@app.route('/classify_image', methods=['POST'])
def classify_image():
global nr
nr = nr + 1
try:
data = flask.request.data # but data will be empty unless the request has the proper content-type header
if not data:
data = flask.request.form.keys()[0]
# print data
# data = urllib.decode(data)
jdata = json.loads(data)
data = jdata["json"]
clazz = 'unknown' # jdata["class"] # learn if different from prediction
net_name = 'speech'
if "class" in jdata:
clazz = jdata["class"]
if "net" in jdata:
net_name = jdata["net"]
# data = bytearray(data)
print len(data)
image = np.asarray(data).astype(np.uint8) # egal? (np.float32) # (np.uint8) for imsave !
print "-------------------------"
print image.shape
if not clazz == 'unknown':
skimage.io.imsave("/data/saved/classify_%s_%s.%d.png" % (net_name, clazz, nr), image)
image = image[:, :, np.newaxis]
result = app.clf.classify_image(image)
if result[0]:
print "YAY, got result %s" % result[2]
return flask.render_template_string(str(result[2]))
else:
return flask.render_template_string("NONE")
except Exception as err:
logging.info('Upload image error: %s', err)
traceback.print_exc(file=sys.stdout)
return 'Upload image error: %s' % err
class SpeechClassifier(object):
default_args = {
'model_def_file': ('model.pbxtext'),
'pretrained_model_file': ('weights.caffemodel'),
'mean_file': (None),
'class_labels_file': (None),
}
default_args['image_dim'] = 256
default_args['raw_scale'] = 255.
default_args['swap_colors_wtf'] = False
default_args['grey'] = False
default_args['gpu_mode'] = True
def __init__(self, model_def_file, pretrained_model_file, mean_file,
raw_scale, class_labels_file, image_dim, gpu_mode, swap_colors_wtf,grey):
logging.info('Loading net and associated files...')
if swap_colors_wtf:
print("swap_colors_wtf")
swap = (2, 1, 0)
else:
print("OK, not swapping any colors")
swap = False
# model = "numbers_deploy.prototxt"
# weights = "numbers_iter_47000.caffemodel"
model = "syllables_deploy.prototxt"
weights = "syllables_iter_27000.caffemodel"
# model = "words_deploy.prototxt"
# weights = "words_iter_1000.caffemodel"
print "gray mode = %s" % grey
print "model_def %s" % model
print "model_file %s" % weights
print "image_dims=(%d,%d)" % (int(image_dim), int(image_dim))
print "raw_scale=%d" % int(raw_scale)
print "mean=%s" % mean_file
print "channel_swap=%s" % str(swap)
print "gpu_mode %s" % gpu_mode
# better do caffe.Classifier(...).predict by hand:
self.net = caffe.Net(model, weights)
# help(self.net)
caffe.set_phase_test()
self.net.set_raw_scale('data', 255.0)
caffe.set_mode_gpu()
if class_labels_file:
with open(class_labels_file) as f:
labels_df = pd.DataFrame([
{
'synset_id': l.strip().split(' ')[0],
'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
}
for l in f.readlines()
])
self.labels = labels_df.sort('synset_id')['name'].values
def classify_image(self, image):
starttime = time.time()
data = np.asarray([self.net.preprocess('data', image)])
out = self.net.forward_all(data=data)
label_field='prob' #'fc8' # words0s ip2?autoencoded
print "classification %s" % out[label_field].flatten()
print "classification class: %d" % out['prob'][0].argmax(axis=0)
print "probability %d" % out['prob'][0].max(axis=0)
endtime = time.time()
meta = out[label_field][0].max(axis=0)
# bet_result = out[label_field][0].argmax(axis=0)
bet_result = out[label_field].flatten()
return (True, meta, bet_result, '%.3f' % (endtime - starttime))
def start_tornado(app, port=5000):
http_server = tornado.httpserver.HTTPServer(
tornado.wsgi.WSGIContainer(app))
http_server.listen(port)
print("Tornado server starting on port {}".format(port))
tornado.ioloop.IOLoop.instance().start()
def start_from_terminal(app):
"""
Parse command line options and start the server.
"""
parser = optparse.OptionParser()
parser.add_option(
'-d', '--debug',
help="enable debug mode",
action="store_true", default=False)
parser.add_option(
'-p', '--port',
help="which port to serve content on",
type='int', default=5000)
parser.add_option(
'-g', '--gpu',
help="use gpu mode",
action='store_true', default=True)
parser.add_option(
'-m', '--model',
help="proto definition of net to use (prototxt)")
parser.add_option(
'-w', '--weights',
help="trained net to use (caffemodel|prototxt)")
parser.add_option(
'-x', '--image_dim',
default=512,
help="image dimension height==width")
parser.add_option(
'-l', '--labels',
help="labels file")
parser.add_option(
'-s', '--dont_swap_colors_wtf',
action='store_true',
help="Normal color mapping"
)
parser.add_option(
'-0', '--grey',
action='store_true',
help="The net expects gray images")
parser.add_option(
'-1', '--gray',
action='store_true')
opts, args = parser.parse_args()
default_args = SpeechClassifier.default_args
default_args.update({'gpu_mode': opts.gpu})
if opts.model:
default_args.update({'model_def_file': opts.model})
if opts.weights:
default_args.update({'pretrained_model_file': opts.weights})
if opts.labels:
default_args.update({'class_labels_file': opts.labels})
if opts.grey or opts.gray:
default_args.update({'grey':opts.grey})
# default_args.update({'image_dim': opts.image_dim})
# print "opts.dont_swap_colors_wtf %s" % str(opts.dont_swap_colors_wtf)
# default_args.update({'swap_colors_wtf': not opts.dont_swap_colors_wtf})
# Initialize classifier
app.clf = SpeechClassifier(**SpeechClassifier.default_args)
if opts.debug:
app.run(debug=True, host='0.0.0.0', port=opts.port)
else:
start_tornado(app, opts.port)
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
start_from_terminal(app)