-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathprior_factory.py
142 lines (119 loc) · 5.13 KB
/
prior_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""
Most codes from https://github.com/musyoku/adversarial-autoencoder/blob/master/aae/sampler.py
"""
import numpy as np
from math import sin,cos,sqrt
def uniform(batch_size, n_dim, n_labels=10, minv=-1, maxv=1, label_indices=None):
if label_indices is not None:
if n_dim != 2 or n_labels != 10:
raise Exception("n_dim must be 2 and n_labels must be 10.")
def sample(label, n_labels):
num = int(np.ceil(np.sqrt(n_labels)))
size = (maxv-minv)*1.0/num
x, y = np.random.uniform(-size/2, size/2, (2,))
i = label / num
j = label % num
x += j*size+minv+0.5*size
y += i*size+minv+0.5*size
return np.array([x, y]).reshape((2,))
z = np.empty((batch_size, n_dim), dtype=np.float32)
for batch in range(batch_size):
for zi in range((int)(n_dim/2)):
z[batch, zi*2:zi*2+2] = sample(label_indices[batch], n_labels)
else:
z = np.random.uniform(minv, maxv, (batch_size, n_dim)).astype(np.float32)
return z
def gaussian(batch_size, n_dim, mean=0, var=1, n_labels=10, use_label_info=False):
if use_label_info:
#if n_dim != 2 or n_labels != 10:
if n_dim != 2 :
raise Exception("n_dim must be 2 and n_labels must be 10.")
def sample(n_labels):
x, y = np.random.normal(mean, var, (2,))
angle = np.angle((x-mean) + 1j*(y-mean), deg=True)
dist = np.sqrt((x-mean)**2+(y-mean)**2)
# label 0
if dist <1.0:
label = 0
else:
label = ((int)((n_labels-1)*angle))//360
if label<0:
label+=n_labels-1
label += 1
return np.array([x, y]).reshape((2,)), label
z = np.empty((batch_size, n_dim), dtype=np.float32)
z_id = np.empty((batch_size), dtype=np.int32)
for batch in range(batch_size):
for zi in range((int)(n_dim/2)):
a_sample, a_label = sample(n_labels)
z[batch, zi*2:zi*2+2] = a_sample
z_id[batch] = a_label
return z, z_id
else:
z = np.random.normal(mean, var, (batch_size, n_dim)).astype(np.float32)
return z
def gaussian_multdim(batch_size, n_dim, mean=0, var=1, n_labels=10, use_label_info=False):
if use_label_info:
def sample(n_labels):
x, y = np.random.normal(mean, var, (2,))
angle = np.angle((x-mean) + 1j*(y-mean), deg=True)
dist = np.sqrt((x-mean)**2+(y-mean)**2)
# label 0
if dist <1.0:
label = 0
else:
label = ((int)((n_labels-1)*angle))//360
if label<0:
label+=n_labels-1
label += 1
return np.array([x, y]).reshape((2,)), label
z = np.empty((batch_size, n_dim), dtype=np.float32)
z_id = np.empty((batch_size), dtype=np.int32)
for batch in range(batch_size):
for zi in range((int)(n_dim/2)):
a_sample, a_label = sample(n_labels)
z[batch, zi*2:zi*2+2] = a_sample
z_id[batch] = a_label
return z, z_id
else:
z = np.random.normal(mean, var, (batch_size, n_dim)).astype(np.float32)
return z
def gaussian_mixture(batch_size, n_dim=2, n_labels=10, x_var=0.5, y_var=0.1, label_indices=None):
if n_dim != 2:
raise Exception("n_dim must be 2.")
def sample(x, y, label, n_labels):
shift = 1.4
r = 2.0 * np.pi / float(n_labels) * float(label)
new_x = x * cos(r) - y * sin(r)
new_y = x * sin(r) + y * cos(r)
new_x += shift * cos(r)
new_y += shift * sin(r)
return np.array([new_x, new_y]).reshape((2,))
x = np.random.normal(0, x_var, (batch_size, (int)(n_dim/2)))
y = np.random.normal(0, y_var, (batch_size, (int)(n_dim/2)))
z = np.empty((batch_size, n_dim), dtype=np.float32)
for batch in range(batch_size):
for zi in range((int)(n_dim/2)):
if label_indices is not None:
z[batch, zi*2:zi*2+2] = sample(x[batch, zi], y[batch, zi], label_indices[batch], n_labels)
else:
z[batch, zi*2:zi*2+2] = sample(x[batch, zi], y[batch, zi], np.random.randint(0, n_labels), n_labels)
return z
def swiss_roll(batch_size, n_dim=2, n_labels=10, label_indices=None):
if n_dim != 2:
raise Exception("n_dim must be 2.")
def sample(label, n_labels):
uni = np.random.uniform(0.0, 1.0) / float(n_labels) + float(label) / float(n_labels)
r = sqrt(uni) * 3.0
rad = np.pi * 4.0 * sqrt(uni)
x = r * cos(rad)
y = r * sin(rad)
return np.array([x, y]).reshape((2,))
z = np.zeros((batch_size, n_dim), dtype=np.float32)
for batch in range(batch_size):
for zi in range((int)(n_dim/2)):
if label_indices is not None:
z[batch, zi*2:zi*2+2] = sample(label_indices[batch], n_labels)
else:
z[batch, zi*2:zi*2+2] = sample(np.random.randint(0, n_labels), n_labels)
return z