Skip to content

Latest commit

 

History

History
48 lines (31 loc) · 3.12 KB

README.md

File metadata and controls

48 lines (31 loc) · 3.12 KB

Building a Torch-TensorRT container

  • Use Dockerfile to build a container which provides the exact development environment that our master branch is usually tested against.

  • The Dockerfile currently uses Bazelisk to select the Bazel version, and uses the exact library versions of Torch and CUDA listed in dependencies.

    • The desired versions of CUDNN and TensorRT must be specified as build-args, with major and minor versions as in: --build-arg TENSORRT_VERSION=a.b --build-arg CUDNN_VERSION=x.y
    • [Optional] The desired base image be changed by explicitly setting a base image, as in --build-arg BASE_IMG=nvidia/cuda:11.8.0-devel-ubuntu22.04, though this is optional
    • [Optional] Additionally, the desired Python version can be changed by explicitly setting a version, as in --build-arg PYTHON_VERSION=3.10, though this is optional as well.
  • This Dockerfile installs pre-cxx11-abi versions of Pytorch and builds Torch-TRT using pre-cxx11-abi libtorch as well.

Note: By default the container uses the pre-cxx11-abi version of Torch + Torch-TRT. If you are using a workflow that requires a build of PyTorch on the CXX11 ABI (e.g. using the PyTorch NGC containers as a base image), add the Docker build argument: --build-arg USE_CXX11_ABI=1

Dependencies

Instructions

  • The example below uses CUDNN 8.9 and TensorRT 8.6
  • See dependencies for a list of current default dependencies.

From root of Torch-TensorRT repo

Build:

DOCKER_BUILDKIT=1 docker build --build-arg TENSORRT_VERSION=8.6 --build-arg CUDNN_VERSION=8.9 -f docker/Dockerfile -t torch_tensorrt:latest .

Run:

nvidia-docker run --gpus all -it --shm-size=8gb --env="DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" --name=torch_tensorrt --ipc=host --net=host torch_tensorrt:latest

Test:

You can run any converter test to verify if Torch-TRT built sucessfully inside the container. Once you launch the container, you can run

bazel test //tests/core/conversion/converters:test_activation --compilation_mode=opt --test_output=summary --config use_precompiled_torchtrt --config pre_cxx11_abi
  • --config use_precompiled_torchtrt : Indicates bazel to use pre-installed Torch-TRT library to test an application.
  • --config pre_cxx11_abi : This flag ensures bazel test uses pre_cxx11_abi version of libtorch. Use this flag corresponding to the ABI format of your Torch-TensorRT installation.

Pytorch NGC containers

We also ship Torch-TensorRT in Pytorch NGC containers . Release notes for these containers can be found here. Check out release/ngc/23.XX branch of Torch-TensorRT for source code that gets shipped with 23.XX version of Pytorch NGC container.