forked from Arturus/kaggle-web-traffic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_features.py
349 lines (297 loc) · 12.7 KB
/
make_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import pandas as pd
import numpy as np
import os.path
import os
import argparse
import extractor
from feeder import VarFeeder
import numba
from typing import Tuple, Dict, Collection, List
def read_cached(name) -> pd.DataFrame:
"""
Reads csv file (maybe zipped) from data directory and caches it's content as a pickled DataFrame
:param name: file name without extension
:return: file content
"""
cached = 'data/%s.pkl' % name
sources = ['data/%s.csv' % name, 'data/%s.csv.zip' % name]
if os.path.exists(cached):
return pd.read_pickle(cached)
else:
for src in sources:
if os.path.exists(src):
df = pd.read_csv(src)
df.to_pickle(cached)
return df
def read_all() -> pd.DataFrame:
"""
Reads source data for training/prediction
"""
def read_file(file):
df = read_cached(file).set_index('Page')
df.columns = df.columns.astype('M8[D]')
return df
# Path to cached data
path = os.path.join('data', 'all.pkl')
if os.path.exists(path):
df = pd.read_pickle(path)
else:
# Official data
df = read_file('train_2')
# Scraped data
scraped = read_file('2017-08-15_2017-09-11')
# Update last two days by scraped data
df[pd.Timestamp('2017-09-10')] = scraped['2017-09-10']
df[pd.Timestamp('2017-09-11')] = scraped['2017-09-11']
df = df.sort_index()
# Cache result
df.to_pickle(path)
return df
# todo:remove
def make_holidays(tagged, start, end) -> pd.DataFrame:
def read_df(lang):
result = pd.read_pickle('data/holidays/%s.pkl' % lang)
return result[~result.dw].resample('D').size().rename(lang)
holidays = pd.DataFrame([read_df(lang) for lang in ['de', 'en', 'es', 'fr', 'ja', 'ru', 'zh']])
holidays = holidays.loc[:, start:end].fillna(0)
result =tagged[['country']].join(holidays, on='country').drop('country', axis=1).fillna(0).astype(np.int8)
result.columns = pd.DatetimeIndex(result.columns.values)
return result
def read_x(start, end) -> pd.DataFrame:
"""
Gets source data from start to end date. Any date can be None
"""
df = read_all()
# User GoogleAnalitycsRoman has really bad data with huge traffic spikes in all incarnations.
# Wikipedia banned him, we'll ban it too
bad_roman = df.index.str.startswith("User:GoogleAnalitycsRoman")
df = df[~bad_roman]
if start and end:
return df.loc[:, start:end]
elif end:
return df.loc[:, :end]
else:
return df
@numba.jit(nopython=True)
def single_autocorr(series, lag):
"""
Autocorrelation for single data series
:param series: traffic series
:param lag: lag, days
:return:
"""
s1 = series[lag:]
s2 = series[:-lag]
ms1 = np.mean(s1)
ms2 = np.mean(s2)
ds1 = s1 - ms1
ds2 = s2 - ms2
divider = np.sqrt(np.sum(ds1 * ds1)) * np.sqrt(np.sum(ds2 * ds2))
return np.sum(ds1 * ds2) / divider if divider != 0 else 0
@numba.jit(nopython=True)
def batch_autocorr(data, lag, starts, ends, threshold, backoffset=0):
"""
Calculate autocorrelation for batch (many time series at once)
:param data: Time series, shape [n_pages, n_days]
:param lag: Autocorrelation lag
:param starts: Start index for each series
:param ends: End index for each series
:param threshold: Minimum support (ratio of time series length to lag) to calculate meaningful autocorrelation.
:param backoffset: Offset from the series end, days.
:return: autocorrelation, shape [n_series]. If series is too short (support less than threshold),
autocorrelation value is NaN
"""
n_series = data.shape[0]
n_days = data.shape[1]
max_end = n_days - backoffset
corr = np.empty(n_series, dtype=np.float64)
support = np.empty(n_series, dtype=np.float64)
for i in range(n_series):
series = data[i]
end = min(ends[i], max_end)
real_len = end - starts[i]
support[i] = real_len/lag
if support[i] > threshold:
series = series[starts[i]:end]
c_365 = single_autocorr(series, lag)
c_364 = single_autocorr(series, lag-1)
c_366 = single_autocorr(series, lag+1)
# Average value between exact lag and two nearest neighborhs for smoothness
corr[i] = 0.5 * c_365 + 0.25 * c_364 + 0.25 * c_366
else:
corr[i] = np.NaN
return corr #, support
@numba.jit(nopython=True)
def find_start_end(data: np.ndarray):
"""
Calculates start and end of real traffic data. Start is an index of first non-zero, non-NaN value,
end is index of last non-zero, non-NaN value
:param data: Time series, shape [n_pages, n_days]
:return:
"""
n_pages = data.shape[0]
n_days = data.shape[1]
start_idx = np.full(n_pages, -1, dtype=np.int32)
end_idx = np.full(n_pages, -1, dtype=np.int32)
for page in range(n_pages):
# scan from start to the end
for day in range(n_days):
if not np.isnan(data[page, day]) and data[page, day] > 0:
start_idx[page] = day
break
# reverse scan, from end to start
for day in range(n_days - 1, -1, -1):
if not np.isnan(data[page, day]) and data[page, day] > 0:
end_idx[page] = day
break
return start_idx, end_idx
def prepare_data(start, end, valid_threshold) -> Tuple[pd.DataFrame, pd.DataFrame, np.ndarray, np.ndarray]:
"""
Reads source data, calculates start and end of each series, drops bad series, calculates log1p(series)
:param start: start date of effective time interval, can be None to start from beginning
:param end: end date of effective time interval, can be None to return all data
:param valid_threshold: minimal ratio of series real length to entire (end-start) interval. Series dropped if
ratio is less than threshold
:return: tuple(log1p(series), nans, series start, series end)
"""
df = read_x(start, end)
starts, ends = find_start_end(df.values)
# boolean mask for bad (too short) series
page_mask = (ends - starts) / df.shape[1] < valid_threshold
print("Masked %d pages from %d" % (page_mask.sum(), len(df)))
inv_mask = ~page_mask
df = df[inv_mask]
nans = pd.isnull(df)
return np.log1p(df.fillna(0)), nans, starts[inv_mask], ends[inv_mask]
def lag_indexes(begin, end) -> List[pd.Series]:
"""
Calculates indexes for 3, 6, 9, 12 months backward lag for the given date range
:param begin: start of date range
:param end: end of date range
:return: List of 4 Series, one for each lag. For each Series, index is date in range(begin, end), value is an index
of target (lagged) date in a same Series. If target date is out of (begin,end) range, index is -1
"""
dr = pd.date_range(begin, end)
# key is date, value is day index
base_index = pd.Series(np.arange(0, len(dr)), index=dr)
def lag(offset):
dates = dr - offset
return pd.Series(data=base_index.loc[dates].fillna(-1).astype(np.int16).values, index=dr)
return [lag(pd.DateOffset(months=m)) for m in (3, 6, 9, 12)]
def make_page_features(pages: np.ndarray) -> pd.DataFrame:
"""
Calculates page features (site, country, agent, etc) from urls
:param pages: Source urls
:return: DataFrame with features as columns and urls as index
"""
tagged = extractor.extract(pages).set_index('page')
# Drop useless features
features: pd.DataFrame = tagged.drop(['term', 'marker'], axis=1)
return features
def uniq_page_map(pages:Collection):
"""
Finds agent types (spider, desktop, mobile, all) for each unique url, i.e. groups pages by agents
:param pages: all urls (must be presorted)
:return: array[num_unique_urls, 4], where each column corresponds to agent type and each row corresponds to unique url.
Value is an index of page in source pages array. If agent is missing, value is -1
"""
import re
result = np.full([len(pages), 4], -1, dtype=np.int32)
pat = re.compile(
'(.+(?:(?:wikipedia\.org)|(?:commons\.wikimedia\.org)|(?:www\.mediawiki\.org)))_([a-z_-]+?)')
prev_page = None
num_page = -1
agents = {'all-access_spider': 0, 'desktop_all-agents': 1, 'mobile-web_all-agents': 2, 'all-access_all-agents': 3}
for i, entity in enumerate(pages):
match = pat.fullmatch(entity)
assert match
page = match.group(1)
agent = match.group(2)
if page != prev_page:
prev_page = page
num_page += 1
result[num_page, agents[agent]] = i
return result[:num_page+1]
def encode_page_features(df) -> Dict[str, pd.DataFrame]:
"""
Applies one-hot encoding to page features and normalises result
:param df: page features DataFrame (one column per feature)
:return: dictionary feature_name:encoded_values. Encoded values is [n_pages,n_values] array
"""
def encode(column) -> pd.DataFrame:
one_hot = pd.get_dummies(df[column], drop_first=False)
# noinspection PyUnresolvedReferences
return (one_hot - one_hot.mean()) / one_hot.std()
return {str(column): encode(column) for column in df}
def normalize(values: np.ndarray):
return (values - values.mean()) / np.std(values)
def run():
parser = argparse.ArgumentParser(description='Prepare data')
parser.add_argument('data_dir')
parser.add_argument('--valid_threshold', default=0.0, type=float, help="Series minimal length threshold (pct of data length)")
parser.add_argument('--add_days', default=64, type=int, help="Add N days in a future for prediction")
parser.add_argument('--start', help="Effective start date. Data before the start is dropped")
parser.add_argument('--end', help="Effective end date. Data past the end is dropped")
parser.add_argument('--corr_backoffset', default=0, type=int, help='Offset for correlation calculation')
args = parser.parse_args()
# Get the data
df, nans, starts, ends = prepare_data(args.start, args.end, args.valid_threshold)
# Our working date range
data_start, data_end = df.columns[0], df.columns[-1]
# We have to project some date-dependent features (day of week, etc) to the future dates for prediction
features_end = data_end + pd.Timedelta(args.add_days, unit='D')
print(f"start: {data_start}, end:{data_end}, features_end:{features_end}")
# Group unique pages by agents
assert df.index.is_monotonic_increasing
page_map = uniq_page_map(df.index.values)
# Yearly(annual) autocorrelation
raw_year_autocorr = batch_autocorr(df.values, 365, starts, ends, 1.5, args.corr_backoffset)
year_unknown_pct = np.sum(np.isnan(raw_year_autocorr))/len(raw_year_autocorr) # type: float
# Quarterly autocorrelation
raw_quarter_autocorr = batch_autocorr(df.values, int(round(365.25/4)), starts, ends, 2, args.corr_backoffset)
quarter_unknown_pct = np.sum(np.isnan(raw_quarter_autocorr)) / len(raw_quarter_autocorr) # type: float
print("Percent of undefined autocorr = yearly:%.3f, quarterly:%.3f" % (year_unknown_pct, quarter_unknown_pct))
# Normalise all the things
year_autocorr = normalize(np.nan_to_num(raw_year_autocorr))
quarter_autocorr = normalize(np.nan_to_num(raw_quarter_autocorr))
# Calculate and encode page features
page_features = make_page_features(df.index.values)
encoded_page_features = encode_page_features(page_features)
# Make time-dependent features
features_days = pd.date_range(data_start, features_end)
#dow = normalize(features_days.dayofweek.values)
week_period = 7 / (2 * np.pi)
dow_norm = features_days.dayofweek.values / week_period
dow = np.stack([np.cos(dow_norm), np.sin(dow_norm)], axis=-1)
# Assemble indices for quarterly lagged data
lagged_ix = np.stack(lag_indexes(data_start, features_end), axis=-1)
page_popularity = df.median(axis=1)
page_popularity = (page_popularity - page_popularity.mean()) / page_popularity.std()
# Put NaNs back
df[nans] = np.NaN
# Assemble final output
tensors = dict(
hits=df,
lagged_ix=lagged_ix,
page_map=page_map,
page_ix=df.index.values,
pf_agent=encoded_page_features['agent'],
pf_country=encoded_page_features['country'],
pf_site=encoded_page_features['site'],
page_popularity=page_popularity,
year_autocorr=year_autocorr,
quarter_autocorr=quarter_autocorr,
dow=dow,
)
plain = dict(
features_days=len(features_days),
data_days=len(df.columns),
n_pages=len(df),
data_start=data_start,
data_end=data_end,
features_end=features_end
)
# Store data to the disk
VarFeeder(args.data_dir, tensors, plain)
if __name__ == '__main__':
run()