-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathplot_sactter.py
59 lines (57 loc) · 3.52 KB
/
plot_sactter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def plot_scatter(latent_code, output_path,
label_file='data/PANCAN/GDC-PANCAN_both_samples_tumour_type.tsv',
colour_file='data/TCGA_colors_obvious.tsv', latent_code_dim=2, have_label=True):
if latent_code_dim <= 3:
if latent_code_dim == 3:
# Plot the 3D scatter graph of latent space
if have_label:
# Set sample label
disease_id = pd.read_csv(label_file, sep='\t', index_col=0)
latent_code_label = pd.merge(latent_code, disease_id, left_index=True, right_index=True)
colour_setting = pd.read_csv(colour_file, sep='\t')
fig = plt.figure(figsize=(8, 5.5))
ax = fig.add_subplot(111, projection='3d')
for index in range(len(colour_setting)):
code = colour_setting.iloc[index, 1]
colour = colour_setting.iloc[index, 0]
if code in latent_code_label.iloc[:, latent_code_dim].unique():
latent_code_label_part = latent_code_label[latent_code_label.iloc[:, latent_code_dim] == code]
ax.scatter(latent_code_label_part.iloc[:, 0], latent_code_label_part.iloc[:, 1],
latent_code_label_part.iloc[:, 2], s=2, marker='o', alpha=0.8, c=colour, label=code)
ax.legend(ncol=2, markerscale=4, bbox_to_anchor=(1, 0.9), loc='upper left', frameon=False)
else:
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(latent_code.iloc[:, 0], latent_code.iloc[:, 1], latent_code.iloc[:, 2], s=2, marker='o',
alpha=0.8)
ax.set_xlabel('First Latent Dimension')
ax.set_ylabel('Second Latent Dimension')
ax.set_zlabel('Third Latent Dimension')
elif latent_code_dim == 2:
if have_label:
# Set sample label
disease_id = pd.read_csv(label_file, sep='\t', index_col=0)
latent_code_label = pd.merge(latent_code, disease_id, left_index=True, right_index=True)
colour_setting = pd.read_csv(colour_file, sep='\t')
plt.figure(figsize=(8, 5.5))
for index in range(len(colour_setting)):
code = colour_setting.iloc[index, 1]
colour = colour_setting.iloc[index, 0]
if code in latent_code_label.iloc[:, latent_code_dim].unique():
latent_code_label_part = latent_code_label[latent_code_label.iloc[:, latent_code_dim] == code]
plt.scatter(latent_code_label_part.iloc[:, 0], latent_code_label_part.iloc[:, 1], s=2,
marker='o', alpha=0.8, c=colour, label=code)
plt.legend(ncol=2, markerscale=4, bbox_to_anchor=(1, 1), loc='upper left', frameon=False)
else:
plt.scatter(latent_code.iloc[:, 0], latent_code.iloc[:, 1], s=2, marker='o', alpha=0.8)
plt.xlabel('First Latent Dimension')
plt.ylabel('Second Latent Dimension')
input_file_name = output_path.split('/')[-1]
fig_path = 'results/' + input_file_name + str(latent_code_dim) + 'D_fig.png'
fig_path_svg = 'results/' + input_file_name + str(latent_code_dim) + 'D_fig.svg'
plt.tight_layout()
plt.savefig(fig_path, dpi=300)
plt.savefig(fig_path_svg)