-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
613 lines (523 loc) · 26.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
import os
import json
import tqdm
import torch
import random
import logging
import argparse
import importlib
import numpy as np
import pandas as pd
from collections import deque
import torch.nn as nn
from torch.utils.data import DataLoader, Subset
from tensorboardX import SummaryWriter
from torch.optim.swa_utils import AveragedModel, SWALR
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.model_selection import StratifiedKFold, train_test_split
from transformers import AdamW
from transformers.optimization import get_linear_schedule_with_warmup
from trick import RDrop, EMA ,PGD, FGM, AWP, FocalLoss, SCELoss, ResampleLoss
from dataset import LoadData
from log import config_logging
parser = argparse.ArgumentParser(description='Pytorch NLP')
parser.add_argument('--train', action='store_true', help='Whether to train')
parser.add_argument('--test', action='store_true', help='Whether to test')
parser.add_argument('--predict', action='store_true', help='Whether to predict')
parser.add_argument('--predict_with_score', action='store_true', default=False, help='Whether to predict and output score')
parser.add_argument('--batch', type=int, default=16, help='Define the batch size')
parser.add_argument('--board', action='store_true', help='Whether to use tensorboard')
parser.add_argument('--datetime', type=str, required=True, help='Get Time Stamp')
parser.add_argument('--epoch', type=int, default=50, help='Training epochs')
parser.add_argument('--gpu', type=str, nargs='+', help='Use GPU')
parser.add_argument('--lr', type=float, default=2e-5, help='learning rate')
parser.add_argument('--seed',type=int, default=42, help='Random Seed')
parser.add_argument('--early_stop',type=int, default=10, help='Early Stop Epoch')
parser.add_argument('--data_folder_dir', type=str, required=True, help='Data Folder Location')
parser.add_argument('--data_file', type=str, help='Data Filename')
parser.add_argument('--label', type=int, default=36, help='label num')
parser.add_argument('--checkpoint', type=int, default=0, help='Use checkpoint')
parser.add_argument('--load', action='store_true', help='load from checkpoint')
parser.add_argument('--load_pt', type=str, help='load from checkpoint')
parser.add_argument('--save', action='store_true', help='Whether to save model')
parser.add_argument('--bert', type=str, required=True, help='Choose Bert')
parser.add_argument('--dropout', type=float, default=0.4, help='dropout ratio')
parser.add_argument('--feature_layer', type=int, default=4, help='feature layers num')
parser.add_argument('--freeze', type=int, default=0, help='freeze bert parameters')
parser.add_argument('--model', type=str, required=True, help='Model type')
parser.add_argument('--en', action='store_true', help='whether to use English model')
parser.add_argument('--assignee', action='store_true', help='whether to not use assignee')
parser.add_argument('--K', type=int, default=1, help='K-fold')
parser.add_argument('--split_test_ratio', type=float, default=0.2, help='if no Kfold, split test ratio')
parser.add_argument('--awp', type=int, default=-1, help='AWP attack start epoch')
parser.add_argument('--ema', type=float, default=0.0, help='EMA decay')
parser.add_argument('--fgm', action='store_true', help='FGM attack')
parser.add_argument('--fl', action='store_true', default=False, help='Whether to use focal loss combined with ce loss')
parser.add_argument('--mixif', action='store_true', help='mixup training')
parser.add_argument('--pgd', type=int, default=0, help='PGD K')
parser.add_argument('--rdrop', type=float, default=0.0, help='RDrop kl_weight')
parser.add_argument('--sce', action='store_true', help='Whether to use symmetric cross entropy loss')
parser.add_argument('--swa', action='store_true', help='swa ensemble')
parser.add_argument('--warmup', type=float, default=0.0, help='warm up ratio')
parser.add_argument('--cb', action='store_true', default=False, help='Whether to use cb loss combined with ce loss')
parser.add_argument('--rfl', action='store_true', default=False, help='Whether to use rfl loss combined with ce loss')
parser.add_argument('--ntrfl', action='store_true', default=False, help='Whether to use ntrfl loss combined with ce loss')
parser.add_argument('--dbfl', action='store_true', default=False, help='Whether to use dbfl loss combined with ce loss')
parser.add_argument('--cbntr', action='store_true', default=False, help='Whether to use cbntr loss combined with ce loss')
parser.add_argument('--db', action='store_true', default=False, help='Whether to use db loss combined with ce loss')
args = parser.parse_args()
model_structure = importlib.import_module(args.model)
PretrainedModel = model_structure.PretrainedModel
getTokenizer = model_structure.getTokenizer
TIMESTAMP = args.datetime
# log
config_logging("log_" + TIMESTAMP)
logging.info('Log is ready!')
logging.info(args)
class_freq = [1775, 656, 3062, 336, 538, 957, 702, 813, 675, 302, 1589, 1023, 49, 533, 163, 402, 258, 260, 277, 173, 756, 319, 26, 288, 288, 176, 238, 171, 131, 116, 156, 85, 5, 137, 153, 35]
train_num = 17623
if args.board:
writer = SummaryWriter('runs/' + TIMESTAMP)
logging.info('Tensorboard is ready!')
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(args.gpu)
logging.info('GPU:' + ','.join(args.gpu))
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if args.gpu:
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ['PYTHONHASHSEED'] = str(seed)
logging.info('Seed:' + str(seed))
def mixup_cross_entropy(pred, y_a, y_b, lam):
cls_criterion = nn.CrossEntropyLoss()
return lam * cls_criterion(pred, y_a) + (1 - lam) * cls_criterion(pred, y_b)
def get_perm(x):
batch_size = x.size(0)
index = torch.randperm(batch_size)
if args.gpu:
index = torch.randperm(batch_size).cuda()
return index
def read_json(input_file):
"""Reads a json list file."""
with open(input_file, "r") as f:
reader = f.readlines()
return [json.loads(line.strip()) for line in reader]
# () read data and process
def read_data(data_path):
df = pd.DataFrame.from_records(read_json(data_path))
if args.en:
df['input_string'] = df.apply(lambda x: f"The name of the patent is {x.title}, applied for by {x.assignee}, and the details are as follows: {x.abstract}",axis=1)
else:
if args.assignee:
df['input_string'] = df.apply(lambda x: f"这份专利的标题为:《{x.title}》,详细说明如下:{x.abstract}",axis=1)
else:
df['input_string'] = df.apply(lambda x: f"这份专利的标题为:《{x.title}》,由“{x.assignee}”公司申请,详细说明如下:{x.abstract}",axis=1)
if len(df.columns) == 5:
df['label_id'] = 0
data = df[['id','input_string','label_id']]
data.columns = ['id','sentence','label']
# data = pd.read_csv(data_path,names=['id','sentence','label'])
logging.info('Read data: ' + data_path)
return data
# evaluate method
def calculateMetrics(label,prediction):
P = round(precision_score(label,prediction,average='macro',zero_division=0),6)
R = round(recall_score(label,prediction,average='macro',zero_division=0),6)
F1 = round(f1_score(label,prediction,average='macro',zero_division=0),6)
return {'F1score':F1,'Precision':P,'Recall':R}
def train_one_epoch(args, train_loader, model, optimizer, scheduler, criterion, epoch, ema):
# define tqdm
epoch_iterator = tqdm.tqdm(train_loader, desc="Iteration", total=len(train_loader))
# set description of tqdm
epoch_iterator.set_description(f'Train-{epoch}')
# set train mode
model.train()
# fgm
if args.fgm:
fgm = FGM(model)
# awp
if args.awp != -1:
awp = AWP(model, start_epoch = args.awp)
# pgd
if args.pgd != 0:
pgd = PGD(model)
loss = 0
for step, ((input_ids, token_type_ids, attention_mask), label) in enumerate(epoch_iterator):
input_ids = input_ids.squeeze(1)
token_type_ids = token_type_ids.squeeze(1)
attention_mask = attention_mask.squeeze(1)
if args.gpu:
model = model.cuda()
input_ids = input_ids.cuda()
token_type_ids = token_type_ids.cuda()
attention_mask = attention_mask.cuda()
label = label.cuda()
if args.mixif:
lam = np.random.beta(0.20, 0.20)
index = get_perm(input_ids)
input_ids_perm = input_ids[index]
label_perm = label[index]
att_perm = attention_mask[index]
if args.mixif:
output = model.forward_mix_encoder(input_ids, attention_mask, input_ids_perm, att_perm, token_type_ids, lam)
else:
output = model(input_ids, token_type_ids, attention_mask)
# rdrop
if args.rdrop != 0.0:
output_rdrop = model(input_ids, token_type_ids, attention_mask)
loss_single = criterion(output, output_rdrop, label, args.rdrop)
elif args.mixif:
loss_single = criterion(output, label, label_perm, lam)
else:
loss_single = criterion(output, label)
loss += loss_single.item()
# backward
loss_single.backward()
# FGM attack
if args.fgm:
fgm.attack() # attack on embedding
output_adv = model(input_ids,token_type_ids,attention_mask)
loss_adv = criterion(output_adv, label)
loss_adv.backward()
fgm.restore() # restore embedding
# awp attack
if args.awp != -1 and epoch >= args.awp:
adv_loss = awp.attack_backward(input_ids, token_type_ids, attention_mask, epoch, label, criterion)
adv_loss.backward()
awp.restore()
# PGD attack
if args.pgd != 0:
pgd.backup_grad()
for t in range(args.pgd):
pgd.attack(is_first_attack=(t==0)) # attack on embedding,and backup param.data when first attack
if t != args.pgd-1:
model.zero_grad()
else:
pgd.restore_grad()
output_adv = model(input_ids, token_type_ids, attention_mask)
loss_adv = criterion(output_adv, label)
loss_adv.backward()
pgd.restore() # 恢复embedding参数
optimizer.step()
if args.warmup != 0.0:
scheduler.step()
# 打印学习率
# print(optimizer.state_dict()['param_groups'][0]['lr'])
if args.ema != 0.0:
ema.update(warmup_if = epoch < args.epoch / 4)
model.zero_grad() # zero grad
# renew tqdm
epoch_iterator.update(1)
# add description in the end
epoch_iterator.set_postfix(loss=loss_single.item())
epoch_iterator.close()
return loss / args.batch, eval_one_epoch(args, train_loader, model, epoch)
def eval_one_epoch(args, eval_loader, model, epoch):
epoch_iterator = tqdm.tqdm(eval_loader, desc="Iteration", total=len(eval_loader))
# set description of tqdm
epoch_iterator.set_description(f'Eval-{epoch}')
# test
model.eval()
prob_all = []
label_all = []
for step, ((input_ids, token_type_ids, attention_mask), label) in enumerate(epoch_iterator):
input_ids = input_ids.squeeze(1)
token_type_ids = token_type_ids.squeeze(1)
attention_mask = attention_mask.squeeze(1)
if args.gpu:
model = model.cuda()
input_ids = input_ids.cuda()
token_type_ids = token_type_ids.cuda()
attention_mask = attention_mask.cuda()
with torch.no_grad():
output = model(input_ids, token_type_ids, attention_mask)
if args.gpu:
output = output.cpu()
predict = output.argmax(axis=1).numpy().tolist()
prob_all.extend(predict)
label_all.extend(label)
epoch_iterator.update(1)
epoch_iterator.close()
metrics = calculateMetrics(label_all,prob_all)
return metrics
def foldData(kfold,all_dataset,K,index,ratio):
if K >= 2:
train_index,eval_index = list(kfold.split(all_dataset, all_dataset.labels))[index]
train_dataset = Subset(all_dataset, train_index)
eval_dataset = Subset(all_dataset, eval_index)
else:
train_dataset, eval_dataset, a, b = train_test_split(all_dataset, all_dataset.labels, test_size=ratio, random_state=args.seed, stratify = all_dataset.labels)
return train_dataset,eval_dataset
# train process
def train(args,data):
# cross validation
if args.K >= 2:
kfold = StratifiedKFold(n_splits=args.K, shuffle=False)
else:
kfold = None
# store metrics
best_metrics_list = [0 for i in range(args.K)]
# cross validation or not (if not, args.K=1 one time)
for n_fold in range(args.K):
# build model
model = PretrainedModel(args.bert, args.label, args.feature_layer, args.dropout)
# use GPU
if args.gpu:
model = model.cuda()
if len(args.gpu) >= 2:
model= nn.DataParallel(model)
if args.ema != 0.0:
ema = EMA(model, args.ema)
ema.register()
else:
ema = None
# sign for cross validation or not
K = n_fold
if args.K >= 2:
K += 1
logging.info(f'Start Training {K}!')
tokenizer = getTokenizer(args.bert)
# data
all_dataset = LoadData(data,tokenizer)
# len(data)
dataset_len = all_dataset.__len__()
# loss function
# whether to use RDrop
if args.rdrop != 0.0:
criterion = RDrop()
elif args.sce:
criterion = SCELoss()
elif args.fl:
criterion = FocalLoss()
elif args.cb:
criterion = ResampleLoss(reweight_func='CB', loss_weight=5.0,
focal=dict(focal=True, alpha=0.5, gamma=2),
logit_reg=dict(),
CB_loss=dict(CB_beta=0.9, CB_mode='by_class'),
class_freq=class_freq, train_num=train_num)
elif args.rfl:
criterion = ResampleLoss(reweight_func='rebalance', loss_weight=1.0,
focal=dict(focal=True, alpha=0.5, gamma=2),
logit_reg=dict(),
map_param=dict(alpha=0.1, beta=10.0, gamma=0.05),
class_freq=class_freq, train_num=train_num)
elif args.ntrfl:
criterion = ResampleLoss(reweight_func=None, loss_weight=0.5,
focal=dict(focal=True, alpha=0.5, gamma=2),
logit_reg=dict(init_bias=0.05, neg_scale=2.0),
class_freq=class_freq, train_num=train_num)
elif args.dbfl:
criterion = ResampleLoss(reweight_func='rebalance', loss_weight=0.5,
focal=dict(focal=False, alpha=0.5, gamma=2),
logit_reg=dict(init_bias=0.05, neg_scale=2.0),
map_param=dict(alpha=0.1, beta=10.0, gamma=0.05),
class_freq=class_freq, train_num=train_num)
elif args.cbntr:
criterion = ResampleLoss(reweight_func='CB', loss_weight=10.0,
focal=dict(focal=True, alpha=0.5, gamma=2),
logit_reg=dict(init_bias=0.05, neg_scale=2.0),
CB_loss=dict(CB_beta=0.9, CB_mode='by_class'),
class_freq=class_freq, train_num=train_num)
elif args.db: # DB
criterion = ResampleLoss(reweight_func='rebalance', loss_weight=1.0,
focal=dict(focal=True, alpha=0.5, gamma=2),
logit_reg=dict(init_bias=0.05, neg_scale=2.0),
map_param=dict(alpha=0.1, beta=10.0, gamma=0.05),
class_freq=class_freq, train_num=train_num)
elif args.mixif:
criterion = mixup_cross_entropy
else:
criterion = nn.CrossEntropyLoss()
# 冻结除了feature_layer外其他的参数
if args.freeze != 0:
# for name, param in model.named_parameters():
# print(name,param.size())
unfreeze_layers = ['layer.'+str(i) for i in range(args.freeze,12)]
unfreeze_layers.extend(['bert.pooler','linear.']) # 注意不能把自己加上去的层也锁了!!!
# print(unfreeze_layers)
for name, param in model.named_parameters():
param.requires_grad = False
for ele in unfreeze_layers:
if ele in name:
param.requires_grad = True
break
# # 验证一下
# for name, param in model.named_parameters():
# if param.requires_grad:
# print(name,param.size())
# 由于在bert官方的代码中对于bias项、LayerNorm.bias、LayerNorm.weight项是免于正则化的。因此经常在bert的训练中会采用与bert原训练方式一致的做法
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.lr,correct_bias=True)
scheduler = optimizer
if args.swa:
swa_model = AveragedModel(model).to('cuda')
swa_scheduler = SWALR(optimizer, swa_lr=args.lr)
# warmup
if args.warmup != 0.0:
if args.K == 1:
num_train_optimization_steps = dataset_len / args.batch * (1-args.split_test_ratio) * args.epoch
else:
num_train_optimization_steps = dataset_len / args.batch * (args.K-1) / args.K * args.epoch
scheduler = get_linear_schedule_with_warmup(optimizer, int(num_train_optimization_steps*args.warmup), num_train_optimization_steps)
# restore from checkpoint
if args.load:
logging.info(f'Load checkpoint_{args.load_pt}_{K}_epoch.pt')
checkpoint = torch.load(f'{MODEL_PATH}checkpoint_{args.load_pt}_{K}_epoch.pt')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# train test split (kfold or not)
train_dataset,eval_dataset = foldData(kfold,all_dataset,args.K,n_fold,args.split_test_ratio)
# early stop
early_stop_sign = deque(maxlen=args.early_stop)
# loops
for epoch in range(args.epoch):
# dataset loader
train_loader = DataLoader(train_dataset,batch_size=args.batch,shuffle=True,drop_last=False)
eval_loader = DataLoader(eval_dataset,batch_size=args.batch*8,shuffle=False,drop_last=False)
# train and evaluate train dataset
loss,metrics_train = train_one_epoch(args, train_loader, model, optimizer, scheduler, criterion, epoch+1, ema)
logging.info(f'Train Epoch = {epoch+1} Loss:{loss:{.6}} Metrics:{metrics_train}')
if args.swa:
swa_model.update_parameters(model)
swa_scheduler.step()
if args.ema != 0.0:
ema.apply_shadow()
# evaluate eval dataset
if args.swa:
metrics = eval_one_epoch(args,eval_loader,swa_model,epoch+1)
else:
metrics = eval_one_epoch(args,eval_loader,model,epoch+1)
logging.info(f'Eval Epoch = {epoch+1} Metrics:{metrics}')
main_metric = metrics[list(metrics.keys())[0]]
# save model
if args.checkpoint != 0 and epoch % args.checkpoint == 0:
torch.save({'epoch': epoch,'model_state_dict': model.state_dict(),'optimizer_state_dict': optimizer.state_dict(),'loss': loss}, MODEL_PATH + 'checkpoint_{}_{}_epoch.pt'.format(epoch,K))
logging.info(f'checkpoint_{epoch}_{K}_epoch.pt Saved!')
# save better model and early_stop
if main_metric > best_metrics_list[n_fold]:
logging.info(f'Test metrics:{main_metric} > max_metric!')
best_metrics_list[n_fold] = main_metric
early_stop_sign.append(0)
if args.save:
if args.swa:
torch.optim.swa_utils.update_bn(train_loader, swa_model, device='cuda')
torch.save(swa_model.state_dict(), MODEL_PATH + 'best_{}.pt'.format(K))
else:
torch.save(model.state_dict(), MODEL_PATH + 'best_{}.pt'.format(K))
logging.info(f'Best Model Saved!')
else:
early_stop_sign.append(1)
if sum(early_stop_sign) == args.early_stop:
logging.info(f'The Effect of last {args.early_stop} epochs has not improved! Early Stop!')
logging.info(f'Best Metric: {best_metrics_list[n_fold]}')
break
# tensorboard
if args.board:
if args.warmup != 0.0:
writer.add_scalar(f'K_{K}/Learning_rate', optimizer.state_dict()['param_groups'][0]['lr'], epoch+1)
writer.add_scalar(f'K_{K}/Loss', loss, epoch+1)
for i in list(metrics.keys()):
writer.add_scalars(f'K_{K}/{i}', {'Train_'+i:metrics_train[i],'Eval_'+i:metrics[i]}, epoch+1)
if args.ema != 0.0:
ema.restore()
# clear gpu parameters
if args.swa:
torch.save(swa_model.state_dict(), MODEL_PATH + 'last_{}.pt'.format(K))
if args.gpu:
torch.cuda.empty_cache()
# use any model to evaluate labeled data
def test(args,data,mode):
logging.info('Start evaluate!')
# test data
test_dataset = LoadData(data,getTokenizer(args.bert))
test_loader = DataLoader(test_dataset,batch_size=args.batch,shuffle=False,drop_last=False)
labellist = []
predict_result = np.empty((args.K,test_dataset.__len__(),args.label))
for n_fold in range(args.K):
K = n_fold
if args.K >= 2:
K += 1
# build model
model = PretrainedModel(args.bert, args.label, args.feature_layer, args.dropout)
# use GPU
if args.gpu:
model = model.cuda()
if len(args.gpu) >= 2 or args.predict or args.predict_with_score:
model= nn.DataParallel(model)
elif args.swa:
model= nn.DataParallel(model)
# load best model
model.load_state_dict(torch.load(MODEL_PATH + 'best_{}.pt'.format(K)), not args.swa)
logging.info(f'best_{K}.pt Loaded!')
# set eval mode
model.eval()
epoch_iterator = tqdm.tqdm(test_loader, desc="Iteration", total=len(test_loader))
# set description of tqdm
epoch_iterator.set_description('Test')
for step, ((input_ids, token_type_ids, attention_mask), label) in enumerate(epoch_iterator):
input_ids = input_ids.squeeze(1)
token_type_ids = token_type_ids.squeeze(1)
attention_mask = attention_mask.squeeze(1)
if args.gpu:
model = model.cuda()
input_ids = input_ids.cuda()
token_type_ids = token_type_ids.cuda()
attention_mask = attention_mask.cuda()
with torch.no_grad():
output = model(input_ids, token_type_ids, attention_mask)
if args.gpu:
output = output.cpu()
output = nn.Softmax(dim=-1)(output).numpy()
output_shape = output.shape
predict_result[n_fold][step*args.batch:step*args.batch+output_shape[0]] = output
if n_fold == 0:
labellist.extend(label)
epoch_iterator.update(1)
epoch_iterator.close()
if mode == 0:
# calculate single model metrics
metrics = calculateMetrics(labellist, predict_result[n_fold].argmax(axis=1).tolist())
logging.info(f'Metrics for best_{K}.pt : {metrics}')
if mode == 1:
return predict_result
# calculate final metrics
metrics = calculateMetrics(labellist, predict_result.mean(axis=0).argmax(axis=1).tolist())
logging.info(f'Metrics for all model : {metrics}')
# predict unlabeled data
def predict(args,data):
predict_result = test(args,data,1)
predict_score = predict_result.mean(axis=0).max(axis=1)
predict_result = predict_result.mean(axis=0).argmax(axis=1)
if not args.predict_with_score:
data['label'] = predict_result
data[['id','label']].to_csv('result_'+TIMESTAMP+'.csv',index=None)
else:
data['label'] = predict_result
data['score'] = predict_score
data[['id','label','score']].to_csv('result_score_'+TIMESTAMP+'.csv',index=None)
logging.info('Predict Finished!')
if __name__ == '__main__':
# set seed
set_seed(args.seed)
MODEL_PATH = './models/' + TIMESTAMP + '/'
DATA_PATH = './data/'
DATA_PATH = os.path.join(DATA_PATH,args.data_folder_dir,args.data_file)
if not os.path.exists(MODEL_PATH):
os.makedirs(MODEL_PATH)
# read data
DATA = read_data(DATA_PATH)
if args.train:
train(args,DATA)
if args.test:
test(args,DATA,0)
if args.predict or args.predict_with_score:
predict(args,DATA)