文件夹序号 | 结果 | 时间戳 | 测试结果 | 模型 | 数据 | GPU | K | batch | epoch | seed | percentile | fix_thresh | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pseudo_1 | expand_train_1.json | 2022-10-13-15-15 | 0.51443849647 | mengzi | train.json | 3090 | 1 | 16 | 50 | 42 | 85 | 0.70 | warmup=0.1 |
pseudo_2 | expand_train_2.json | 2022-10-13-22-48 | 0.55291467089 | mengzi | expand_train_1.json | 3090 | 1 | 16 | 50 | 42 | 70 | 0.70 | warmup=0.1 |
pseudo_3 | expand_train_3.json | 2022-10-13-23-41 | 0.56821691118 | mengzi | expand_train_2.json | 3090 | 1 | 16 | 50 | 42 | 50 | 0.70 | warmup=0.1 |
pseudo_3 | expand_train_4.json | 2022-10-13-23-41 | 0.56821691118 | mengzi | expand_train_2.json | 3090 | 1 | 16 | 50 | 42 | 30 | 0.70 | warmup=0.1 |
pseudo_4 | expand_train.json | 2022-10-14-13-52 | 0.60286913357 | mengzi | expand_train_4.json | 3090 | 5 | 32 | 50 | 42 | 25 | 0.70 | warmup=0.1 |
pseudo_5 | expand_train_cur_best.json | 2022_11_07_18_40_47 | 0.59952852320 | hfl/chinese-macbert-base | expand_train.json | 2080Ti*2 | 1 | 12 | 40 | 42 | 20 | 0.70 | pgd=3 |
*.aug_tail.json
尾部类别 (12, 22, 32, 35) 大语种翻译 (每句话 5 次) + Chinese EDA 数据增强 (每句话 20 次)
涉及到的文件:eda.py
、back_trans.py
作用 | 最终预测 | expand_train_630 | expand_train_632 | expand_train_6422 | expand_train_6460 |
---|---|---|---|---|---|
2022_10_22_19_12_04 | 3 | 3 | 3 | ||
2022_10_27_07_38_29 | 3 | 3 | 3 | 3 | |
2022_11_01_04_26_32 | 3 | 3 | 3 | 3 | |
2022_11_03_19_41_25 | 1、2 | 1、2、3、4 | 1、2、4 | ||
2022_11_05_05_55_17 | 0 | ||||
2022_11_06_04_35_15 | 1、2 | 1、3 | |||
2022_11_06_19_08_24 | 2 | ||||
2022_10_25_05_36_40 | 1 | ||||
备注 | F1 = 0.6307787544 percentile = 20 fix_thresh = 0.70 |
F1 = 0.63293263685 percentile = 20 fix_thresh = 0.70 |
F1 = 0.64228001063 percentile = 20 fix_thresh = 0.70 |
F1 = 0.63926327467 percentile = 20 fix_thresh = 0.70 |
时间 | 成员 | 得分 | 预训练模型 | 训练轮数 | 交叉验证 | 其他设置 | 训练集+验证集得分 | 验证集得分 |
---|---|---|---|---|---|---|---|---|
训练开始:2022/10/12 15:49:35 训练结束:2022/10/12 18:52:39 提交时间:2022/10/12 18:54 |
张兆 | 0.46661411496 | nghuyong/ernie-3.0-base-zh | 60 | 5 | warmup 0.1(用的可能不对) 2080Ti*2 batch=24 random_seed=42 |
best_1.pt : 0.7630403185746878 best_2.pt : 0.785194086089213 best_3.pt : 0.8484339825318716 best_4.pt : 0.8481442706893945 best_5.pt : 0.8564035464087444 bagging : 0.9039802357258913 |
|
训练开始:2022/10/12 20:34:47 训练结束:2022/10/12 20:52:25 提交时间:2022/10/12 20:54 |
张兆 | 0.50926177 | Langboat/mengzi-bert-base | 25 | 1 | 2080Ti*2 batch=24 random_seed=42 random_split_ratio=0.8 |
0.9035649164096997 | 0.555419 |
训练开始:2022/10/12 20:57:30 训练结束:2022/10/13 00:12:28 提交时间:2022/10/13 08:23 |
张兆 | 0.54461296043 | nghuyong/ernie-3.0-base-zh | 30 | 10 | 2080Ti*2 batch=24 random_seed=42 |
best_1.pt : 0.9501953736953739 best_2.pt : 0.8090291204084319 best_3.pt : 0.6498208126075585 best_4.pt : 0.9427773331560824 best_5.pt : 0.9111302191404046 best_6.pt : 0.8292753225364519 best_7.pt : 0.8938565221741899 best_8.pt : 0.9537918662275343 best_9.pt : 0.7997188727837208 best_10.pt : 0.8814895748089789 bagging : 0.954136902855915 |
0.616938 0.586474 0.529849 0.564196 0.568573 0.516865 0.46167 0.598384 0.542902 0.67397 |
训练开始:2022/10/13 11:39:52 训练结束:2022/10/13 16:40:56 提交时间:2022/10/13 17:38 |
张兆 | 0.56185948422 | nghuyong/ernie-3.0-base-zh | 50 | 10 | 2080Ti*2 batch=24 random_seed=42 correct_bias = True |
best_1.pt : 0.958411 best_2.pt : 0.878444 best_3.pt : 0.950718 best_4.pt : 0.932414 best_5.pt : 0.929663 best_6.pt : 0.952183 best_7.pt : 0.952413 best_8.pt : 0.965563 best_9.pt : 0.949669 best_10.pt : 0.761528 bagging : 0.995802 |
0.627148 0.627045 0.524618 0.632453 0.603112 0.521837 0.550469 0.65892 0.498028 0.668365 |
训练开始:2022/10/15 10:00:01 训练结束:2022/10/15 10:25:30 训练开始:2022/10/15 11:25:11 训练结束:2022/10/15 11:59:54 |
张兆 | 未验证 | nghuyong/ernie-3.0-base-zh | 50 | 1 | 未添加RDrop: 2080Ti2 batch=24 random_seed=42 correct_bias = True 添加RDrop: 2080Ti4 batch=24 random_seed=42 correct_bias = True RDrop=0.4 |
未添加RDrop:0.909574 添加RDrop:0.924773 |
未添加RDrop:0.568337 添加RDrop:0.635372 |
训练开始:2022/10/15 14:01:25 训练结束:2022/10/15 14:35:36 |
张兆 | 未验证 | nghuyong/ernie-3.0-base-zh | 50 | 1 | 添加FGM: 2080Ti*4 batch=24 random_seed=42 correct_bias = True |
未添加FGM:0.909574 添加FGM:0.924612 |
未添加FGM:0.568337 添加FGM:0.60684 |
训练开始:2022/10/15 14:37:24 训练结束:2022/10/15 15:49:57 |
张兆 | 未验证 | nghuyong/ernie-3.0-base-zh | 50 | 1 | 添加PGD: 2080Ti*4 batch=24 random_seed=42 correct_bias = True PGD_K=3 |
未添加PGD:0.909574 添加PGD:0.917637 |
未添加PGD:0.568337 添加PGD:0.582854 |
训练开始:2022/10/15 21:18:01 训练结束:2022/10/16 03:22:04 |
张兆 | 0.56684304078 | nghuyong/ernie-3.0-base-zh | 50 | 10 | 2080Ti*4 batch=24 random_seed=42 correct_bias = True RDrop=0.4 |
best_1.pt : 0.964261 best_2.pt : 0.937494 best_3.pt : 0.93178 best_4.pt : 0.915917 best_5.pt : 0.954728 best_6.pt : 0.95125 best_7.pt : 0.951136 best_8.pt : 0.957213 best_9.pt : 0.959292 best_10.pt : 0.967787 bagging : 0.995802 |
0.58019 0.576124 0.526915 0.577535 0.612728 0.559396 0.549781 0.646989 0.537495 0.687826 |
李一鸣 | 0.60286913357 | Langboat/mengzi-bert-base | 40 | 5 | batch=12 用官方测试集 F1 = 0.57 的模型产生的伪标签进行 pseudo-labelling | |||
李一鸣 | 0.587 | Langboat/mengzi-bert-base | 40 | 1 | batch=12 用官方测试集 F1 = 0.57 的模型产生的伪标签进行 pseudo-labelling | |||
李一鸣 | 0.58719238 | Langboat/mengzi-bert-base | 40 | 5 | batch=12, 用官方测试集 F1 = 0.60 的模型产生的伪标签进行 pseudo-labelling, RDrop=0.1 | |||
李一鸣 | 0.58009964029 | Langboat/mengzi-bert-base | 40 | 1 | batch=12, 用官方测试集 F1 = 0.60 的模型产生的伪标签进行 pseudo-labelling, RDrop=0.1 | |||
李一鸣 | 0.60216 | Langboat/mengzi-bert-base | 40 | 1 | batch=24, 用官方测试集 F1 = 0.599 的模型产生的伪标签(expand_train_cur_best.json )进行 pseudo-labelling, no extra tricks | |||
训练开始:2022/10/16 17:28:14 训练结束:2022/10/16 18:10:27 |
张兆 | 0.52782175403 | Langboat/mengzi-bert-base | 50 | 1 | 2080Ti*2 batch=24 | 0.911089 | 0.604567 |
训练开始:2022/10/16 18:10:31 训练结束:2022/10/16 18:58:40 |
张兆 | 0.50326362551 | Langboat/mengzi-bert-base | 50 | 1 | 2080Ti*4 batch=24 RDrop=0.4 |
0.900517 | 0.560547 |
训练开始:2022/10/16 18:58:44 训练结束:2022/10/16 19:41:36 |
张兆 | 0.50364182397 | nghuyong/ernie-3.0-base-zh | 50 | 1 | 2080Ti*2 batch=24 | 0.914422 | 0.566295 |
训练开始:2022/10/16 20:57:37 训练结束:2022/10/16 21:48:23 |
张兆 | 0.52432191354 | nghuyong/ernie-3.0-base-zh | 50 | 1 | 2080Ti*4 batch=24 RDrop=0.4 |
0.924773 | 0.635372 |
张兆 | 0.60906089726 1:0.59323842065 3:0.62876738448 5:0.60725801303 2 3 4:0.61215379337 |
nghuyong/ernie-3.0-base-zh | 40 | 5 | V100*4 batch=128 fgm |
0.940159 0.959345 0.982243 0.961593 0.961342 bagging:0.967881 |
0.83072 0.928769 0.927161 0.934107 0.943387 |
|
大模型实验 2022_10_29_18_22_10 |
张兆 | 0.58887581038 | hfl/chinese-roberta-wwm-ext-large | 50 | 1 | V100*8 batch=64 fgm |
0.987128 | Epoch=27 0.924402 |
全语言实验 2022_10_29_18_43_16 |
张兆 | 0.60163217528 | pretrained/nghuyong/ernie-3.0-base-zh | 50 | 1 | V100*8 batch=128 fgm |
0.999038 | Epoch =29 0.99521 |
大模型实验 2022_10_29_20_26_06 |
张兆 | 0.59526036696 | nghuyong/ernie-3.0-xbase-zh | 50 | 1 | V100*8 batch=128 fgm |
0.983985 | Epoch =34 0.913857 |
探究不同因素对不同模型的影响
基本配置:batch=12,epoch=40 (early stop), gpu=2,3, lr=2e-5, seed=42, split_test_ratio=0.2, dropout=0.3
数据采用expand_train.json
模型 | baseline | rdrop=0.1 | rdrop=0.5 | rdrop=1.0 | ema=0.999 | pgd=3 | warmup=0.1 | fgm |
---|---|---|---|---|---|---|---|---|
mengzi-bert-base | 2022_10_25_05_36_57 Epoch =11 0.943702 0.973459 0.58946182233 |
2022_10_25_05_36_51 Epoch =13 0.948241 0.981155 0.58861785176 |
2022_10_25_05_37_12 Epoch =12 0.953051 0.953051 0.58592248996 |
2022_10_25_05_37_15 Epoch =22 0.955365 0.984842 0.58437014014 |
2022_10_25_05_41_54 Epoch =20 0.955028 0.983924 0.58043132506 |
2022_10_25_05_37_08 Epoch =14 0.94846 0.982611 0.58877098445 |
||
ernie-3.0-base-zh | 2022_10_21_17_44_31 Epoch = 12 0.939449 0.975266 0.61203747617 |
2022_10_22_16_39_14 Epoch=32 0.947126 0.986405 0.60179269740 |
2022_10_23_04_57_21 Epoch=20 0.94027 0.975243 0.58086732341 |
2022_10_21_21_46_43 Epoch =28 0.939117 0.981063 0.60027698592 |
2022_10_22_22_19_15 Epoch=20 0.942571 0.981936 0.59630101157 |
|||
chinese-macbert-base | 2022_10_19_09_04_25 Epoch =11 0.93218 0.973964 0.58566511183 |
2022_10_21_17_25_43 Epoch =27 0.937448 0.984506 0.56675022857 |
2022_10_20_20_00_52 Epoch =19 0.944687 0.983283 0.57831287521 |
2022_10_22_03_38_29 Epoch =17 0.942641 0.981227 0.58781315810 |
2022_10_20_02_42_28 Epoch =19 0.950837 0.98362 0.59952852320 |
2022_10_21_04_24_30 Epoch =33 0.955382 0.990917 0.57818127106 |
2022_10_19_14_51_36 Epoch =25 0.940839 0.988269 0.59486694090 |
|
chinese-roberta-wwm-ext | 2022_10_25_08_19_12 Epoch=14 0.943605 0.979684 0.59554496893 |
2022_10_25_11_23_51 Epoch=25 0.948677 0.985914 0.59928113089 |
2022_10_25_15_54_51 Epoch=15 0.946985 0.980388 0.58545683003 |
2022_10_25_19_05_47 Epoch=15 0.945916 0.983087 0.60706732296 |
基本配置:batch=12,epoch=40 (early stop), gpu=2,3, lr=2e-5, seed=42, split_test_ratio=0.2, dropout=0.3
数据采用expand_train_cur_best_en.json
模型 | baseline | ema=0.999 | pgd=3 | fgm | warmup=0.1 |
---|---|---|---|---|---|
ernie-2.0-base-en | 2022_10_23_18_05_14 Epoch =24 0.869316 0.947128 0.58633437923 |
2022_10_23_18_18_01 Epoch =27 0.883606 0.973969 0.58900858108 |
2022_10_23_18_05_27 Epoch =18 0.851685 0.94073 0.56777475031 |
2022_10_23_18_19_40 Epoch =24 0.884273 0.953767 0.60969211560 |
2022_10_23_18_05_32 Epoch =25 0.86958 0.968817 0.59526836713 |
roberta-base | |||||
xlnet-base-cased | 2022_10_24_05_41_37 Epoch =31 0.876336 0.976078 0.59146824680 |
2022_10_24_05_41_04 Epoch =17 0.868918 0.969398 0.59067118434 |
2022_10_24_05_41_12 Epoch =19 0.875453 0.970272 0.57834073199 |
2022_10_24_05_41_20 Epoch =21 0.879417 0.976025 0.58459104336 |
2022_10_24_05_41_29 Epoch =24 0.873381 0.974582 0.59797619630 |
deberta-v3-base | 2022_10_24_10_44_57 Epoch =25 0.875878 0.943788 0.58797673621 |
2022_10_24_10_50_12 Epoch =37 0.880665 0.947626 0.59859900583 |
2022_10_24_10_52_08 Epoch =28 0.894997 0.955026 0.60094762341 |
2022_10_24_10_54_03 Epoch =24 0.881334 0.947271 0.59791066113 |
2022_10_24_10_51_34 Epoch =24 0.856213 0.933411 0.58096981486 |
二郎神:IDEA-CCNL/Erlangshen-DeBERTa-v2-320M-Chinese
数据采用expand_train_cur_best.json
2022_10_26_06_08_38:不加 Epoch =14 0.909819 0.979235 0.61420523782
2022_10_26_06_05_48:加fgm Epoch =8 0.913229 0.979437 0.59672118680
ernie-2.0-base-en+fgm 十折交叉验证 expand_train_cur_best_en.json
2022_10_25_05_36_32
1:Epoch =23 0.738594 0.943053 0.59779498710
2:Epoch =20 0.942162 0.965787 0.61183453255
3:Epoch =14 0.921992 0.961072 0.60124333189
4:Epoch =22 0.912673 0.964743 0.60470543799
5:Epoch =15 0.90293 0.962382 0.61298211869
6:Epoch =23 0.918961 0.974785 0.62131731657
7:Epoch =15 0.920576 0.963609
8:Epoch =20 0.914956 0.965676
9:Epoch =40 0.946059 0.991682
10:Epoch=29 0.938323 0.990791
0.970571
0.61755036431
ernie-3.0-base-zh+fgm 十折交叉验证 expand_train_cur_best+en_zh.json
2022_10_25_05_36_40
1:Epoch =39 0.980802 0.997899 0.62529548458
2:Epoch =35 0.99583 0.999507 0.61470568046
3:Epoch=33 0.968477 0.996453 0.61029077511
4:Epoch =40 0.998369 0.99666 0.61501080887
5:Epoch =37 0.96937 0.996507 0.61981191769
6:Epoch =34 0.95805 0.995294 0.62014754016
7:Epoch =39 0.97682 0.994493 0.60765491039
8:Epoch =37 0.950761 0.994647
9:Epoch=35 0.983666 0.995142
10:Epoch =39 0.974248 0.997419
0.996792
0.62106441848
batch=128, bert='pretrained/nghuyong/ernie-3.0-base-zh'
data_file='expand_train_cur_best.json',
8*V100 32G
五折
随机数 | 时间戳 | 1 | 2 | 3 | 4 | 5 | all |
---|---|---|---|---|---|---|---|
3407 | 2022_10_27_07_36_12 | Epoch =29 0.828277 0.940246 |
Epoch=38 0.922059 0.975522 |
Epoch =26 0.922241 0.978571 |
Epoch =20 0.920416 0.961822 0.59931987441 |
Epoch =18 0.928557 0.964518 |
0.976724 0.60708719687 |
fgm+3407 | 2022_10_27_07_32_33 | Epoch =29 0.837168 0.958176 0.62207249038 |
Epoch =33 0.93111 0.978384 0.61360985387 |
Epoch=27 0.928721 0.981655 0.60667812125 |
Epoch =22 0.932218 0.959626 0.59740545961 |
Epoch =29 0.938336 0.972912 0.59479068059 |
0.984951 0.61382655005 |
219 | 2022_10_27_07_40_08 | Epoch = 16 0.82509 0.936603 0.59974018113 |
Epoch = 17 0.921952 0.956262 0.60490219534 |
Epoch = 21 0.912299 0.955187 0.59659364810 |
Epoch = 16 0.932538 0.960904 |
Epoch = 35 0.936999 0.98227 0.61027444916 |
0.976059 0.61142175663 |
fgm+219 | 2022_10_27_07_44_22 | Epoch=33 0.837085 0.942478 0.61739339132 |
Epoch =36 0.931217 0.978476 0.61062900994 |
Epoch =32 0.920706 0.981834 0.61664927614 |
Epoch =34 0.934104 0.978847 0.62235183026 |
Epoch =35 0.945433 0.986606 0.60045155119 |
0.991535 0.61824679505 |
909 | 2022_10_27_07_38_29 | Epoch =38 0.827719 0.949487 |
Epoch =32 0.927994 0.969012 |
Epoch =30 0.918163 0.97716 0.63077875449 |
Epoch =18 0.927548 0.968832 |
Epoch=38 0.933141 0.982951 0.60616902305 |
0.985358 0.62524955972 |
fgm+909 | 2022_10_27_07_43_16 | Epoch = 34 0.833804 0.948922 |
Epoch = 21 0.932729 0.96123 0.60084338886 |
Epoch = 13 0.921903 0.949437 0.59973293567 |
Epoch = 36 0.934 0.979314 0.62197043809 |
Epoch = 36 0.938507 0.98511 0.60984056326 |
0.978551 0.61553075216 |
ernie-3.0-base-zh,单卡V100 32G,batch 32,epoch 50,数据expand_train_cur_best.json
添加fgm | 不添加fgm |
---|---|
2022_10_29_09_06_14 Epoch =50 0.916163 0.981227 0.62434188208 |
2022_10_29_09_03_42 Epoch =46 0.914986 0.980371 0.60998950294 |
ernie-3.0-base-zh,4*V100 32G,batch 128,epoch 50,数据expand_train_cur_best.json,fgm
model1 | model2 | model3 | model4 | model5 |
---|---|---|---|---|
last_hidden+MLP | 后四层连接 | pooler_output输出 | pooler_output+MLP | 前四层+后四层平均 |
2022_10_29_13_36_46 Epoch =29 0.917249 0.980737 0.61477357402 |
2022_10_29_09_10_37 Epoch =29 0.917644 0.985873 0.60476939744 |
2022_10_29_09_13_44 Epoch =24 0.921817 0.982066 0.60608243078 |
2022_10_29_09_14_02 Epoch =41 0.923856 0.982397 0.61429143697 |
2022_10_29_09_16_20 Epoch =14 0.918428 0.974142 0.60180561494 |
expand_train_cur_best.json
模型 | 训练配置 | 1 | 2 | 3 | 4 | 5 | all |
---|---|---|---|---|---|---|---|
ernie-xbase + fgm | 2022_10_30_05_13_40 8*V100 32G batch 128 |
Epoch=28 0.85882 0.962631 0.59420600432 |
Epoch =11 0.925827 0.957288 0.59320443123 |
Epoch =20 0.930223 0.982003 0.60906881597 |
Epoch =18 0.93642 0.976608 0.59153312985 |
Epoch =18 0.945131 0.984544 0.60618609586 |
0.99059 0.60398456406 |
ernie-xbase + fgm + swa | 2022_10_30_05_17_06 单卡V100 32G batch 16 |
Epoch =34 0.833288 0.59777530265 |
Epoch =23 0.936805 2022_11_02_03_26_58 |
Epoch=23 0.942784 2022_11_02_20_43_59 |
停止 | ||
ernie + fgm + swa | 2022_10_30_05_10_41 单卡V100 32G batch 32 |
Epoch =18 0.850886 0.945433 0.61460610456 |
Epoch =22 0.937315 0.962094 0.61609908526 |
Epoch=47 0.927484 0.984062 0.61932705714 |
Epoch =43 0.936822 0.980606 0.61907224613 |
Epoch =29 0.948016 0.965169 0.61239652746 |
0.970118 0.61836815011 |
ernie-3.0-base-zh,2*V100 32G,batch 32,expand_train_cur_best.json
cb | rfl | ntrfl | dbfl |
---|---|---|---|
2022_10_30_16_22_03 | 2022_10_30_16_26_50 | 2022_10_30_16_31_32 | 2022_10_30_16_32_21 |
Epoch =42 0.92314 0.986964 0.61037779477 |
Epoch=26 0.92106 0.98226 0.61772640943 |
Epoch =17 0.925418 0.981216 0.61171727349 |
Epoch =29 0.922694 0.981506 0.60664211626 |
batch=64, bert='pretrained/nghuyong/ernie-3.0-xbase-zh'
data_file='expand_train_cur_best.json'
4*V100 32G
四折
随机数 | 时间戳 | 1 | 2 | 3 | 4 | all |
---|---|---|---|---|---|---|
5267 | 2022_10_31_03_07_03 | Epoch = 8 0.844945 0.936316 2022_11_01_03_36_44 |
Epoch = 14 0.929097 0.975143 2022_11_01_03_42_36 |
Epoch = 37 0.936798 0.983429 2022_11_01_03_48_52 |
Epoch = 20 0.937756 0.982108 2022_11_01_03_52_27 |
0.979784 |
6271 | 2022_10_31_03_07_58 | Epoch =26 0.857581 0.953757 0.60340980050 |
Epoch =11 0.933323 0.956936 2022_11_01_03_59_29 |
Epoch =22 0.93793 0.981894 2022_11_01_04_03_06 |
Epoch =15 0.933826 0.980293 2022_11_01_04_06_31 |
0.985472 |
3254 | 2022_10_31_03_13_49 | Epoch =15 0.848537 0.954258 2022_11_01_04_09_52 |
Epoch =23 0.930986 0.979635 0.59871831078 |
Epoch =33 0.936514 0.98287 0.62449404558 |
Epoch=24 0.931808 0.981126 0.59931316293 |
0.995635 0.61619123551 |
1618 | 2022_10_31_03_15_53 | Epoch =24 0.850448 0.956344 2022_11_01_04_24_47 |
Epoch =17 0.921543 0.971829 2022_11_01_04_28_20 |
Epoch =9 0.927174 0.954966 2022_11_01_04_31_58 |
Epoch=41 0.939747 0.984025 0.61157607909 |
0.990993 |
5374 | 2022_10_31_03_19_03 | Epoch = 12 0.851206 0.938386 2022_11_01_04_40_29 |
Epoch = 15 0.922498 0.977894 2022_11_01_04_44_08 |
Epoch = 14 0.935281 0.976279 2022_11_01_04_47_53 |
Epoch = 16 0.934405 0.97992 2022_11_01_04_51_41 |
0.98513 |
7606 | 2022_10_31_03_35_55 | Epoch =14 0.851953 0.948443 0.61432388691 |
Epoch=21 0.931022 0.974039 2022_11_01_04_59_19 |
Epoch=17 0.935818 0.977052 2022_11_01_05_03_09 |
Epoch =24 0.944068 0.984329 0.58745971606 |
0.991329 |
expand_train_aug_tail.json
ernie-3.0-base-zh
fgm
model1
配置 | 时间戳 | 1 | 2 | 3 | 4 | 5 | all |
---|---|---|---|---|---|---|---|
batch=128 4*V100 seed=3407 |
2022_11_01_04_22_41 2022_11_02_03_08_56 |
Epoch =32 0.871526 0.974331 |
Epoch =28 0.964592 0.991178 |
Epoch =41 0.973115 0.994438 0.62325553677 |
Epoch =13 0.970786 0.989015 0.61143654969 |
Epoch =19 0.976139 0.992837 0.61164173186 |
0.997983 0.61838623151 |
batch=128 4*V100 seed=42 |
2022_11_01_04_26_32 2022_11_02_03_10_10 |
Epoch =29 0.87611 0.975097 |
Epoch =31 0.965207 0.990986 0.61300549904 |
Epoch =24 0.965826 0.991184 0.63293263685 |
Epoch =39 0.977998 0.995103 0.61587753363 |
Epoch =18 0.972853 0.991349 0.60745748898 |
0.997956 0.62664852015 |
batch=32 单卡 seed=42 swa=True |
2022_11_01_05_09_54 | Epoch =48 0.876458 2022_11_02_03_40_24 |
Epoch =28 0.971478 2022_11_02_20_35_04 |
停止 |
batch=64, bert='pretrained/nghuyong/ernie-3.0-base-zh'
data_file='expand_train_cur_best.json',
4*V100 32G
fgm
四折
随机数 | 时间戳 | 1 | 2 | 3 | 4 | all |
---|---|---|---|---|---|---|
1 | 2022_11_02_03_32_27 2022_11_02_19_38_48 |
Epoch =12 0.853343 0.938496 |
Epoch =23 0.934691 0.961254 |
Epoch =18 0.93041 0.959059 |
Epoch =20 0.937899 0.977642 |
0.969301 |
2 | 2022_11_02_03_32_58 2022_11_02_19_47_37 |
Epoch =25 0.856089 0.955624 |
Epoch =25 0.935358 0.978399 |
Epoch =19 0.925913 0.957886 |
Epoch =18 0.937418 0.980764 |
0.968468 0.62021852110 |
3 | 2022_11_02_03_37_21 2022_11_02_19_56_27 |
Epoch =16 0.857157 0.941225 |
Epoch =21 0.936291 0.977023 |
Epoch =36 0.9289 0.977059 |
Epoch =42 0.931982 0.980649 |
0.9868 0.61908867574 |
4 | 2022_11_02_03_40_55 2022_11_02_20_05_19 |
Epoch=20 0.85396 0.940266 |
Epoch =13 0.934075 0.958485 |
Epoch=25 0.937078 0.977961 |
Epoch =13 0.933042 0.953424 |
0.968248 |
ernie-3.0-base-zh,model1,batch=128,4*V100 32G,seed=42
配置 | 时间戳 | 1 | 2 | 3 | 4 | 5 | all |
---|---|---|---|---|---|---|---|
train_1.json | 2022_11_02_19_46_18 | Epoch=30 0.951351 0.989547 |
Epoch =8 0.960934 0.982272 |
Epoch =33 0.972444 0.994191 0.62424420592 |
Epoch=32 0.971671 0.994274 0.62282102063 |
Epoch=42 0.983029 0.996411 0.60209126670 |
0.999394 0.62709795528 |
train_2.json | 2022_11_02_19_48_24 | Epoch =27 0.936979 0.987124 |
Epoch =14 0.968284 0.99085 |
Epoch =24 0.968725 0.992486 0.61248007133 |
Epoch =29 0.976006 0.994891 |
Epoch =50 0.980255 0.995916 |
0.999213 0.62776592938 |
train_3.json | 2022_11_02_19_49_15 | Epoch =33 0.945613 0.988999 |
Epoch =33 0.96962 0.993691 |
Epoch =22 0.970094 0.993323 |
Epoch =23 0.974919 0.994009 |
Epoch =44 0.980772 0.995917 |
0.999506 0.61825667047 |
assignee=True expand_train_aug_tail.json |
2022_11_02_19_51_58 | Epoch =24 0.862726 0.969741 |
Epoch =7 0.945047 0.968843 |
Epoch =9 0.953333 0.976113 |
Epoch =30 0.960581 0.990204 |
Epoch =17 0.955794 0.983563 |
0.990541 0.61689728830 |
seed=909 expand_train_aug_tail.json fgm=False |
2022_11_02_19_54_00 | Epoch =16 0.862872 0.970313 |
Epoch =27 0.961241 0.990883 |
Epoch =15 0.958736 0.985262 0.60714643290 |
Epoch =19 0.967793 0.990451 |
Epoch =16 0.965509 0.985466 |
0.996883 0.61925341996 |
seed=42 train_630_aug_tail.json |
2022_11_02_19_58_44 | Epoch =38 0.86662 0.973508 0.61892184410 |
Epoch=22 0.966239 0.991846 0.62699731852 |
Epoch =22 0.99014 0.996317 0.62829439429 |
Epoch =18 0.978446 0.992617 0.62607548483 |
Epoch=13 0.972539 0.989964 0.61848918549 |
0.99747 0.63099144316 |
seed=909 train_630_aug_tail.json fgm=False |
2022_11_02_19_59_44 | Epoch =20 0.858304 0.969588 |
Epoch=14 0.961148 0.986552 |
Epoch =19 0.981033 0.992011 0.62140866596 |
Epoch =16 0.967573 0.986563 |
Epoch =10 0.967701 0.984855 |
0.995281 0.62570651609 |
seed=42 train_632_aug_tail.json |
2022_11_02_20_01_13 | Epoch =24 0.870113 0.973455 2022_11_03_03_59_12_3 |
Epoch =42 0.972512 0.994253 0.62641728896 |
Epoch =25 0.993971 0.997304 0.62363084980 |
Epoch =29 0.978241 0.994846 0.61682686555 |
Epoch =19 0.975262 0.992922 0.62228775322 |
0.998875 0.63094056485 |
seed=909 train_632_aug_tail.json fgm=False |
2022_11_02_20_01_55 | Epoch =10 0.850151 0.964642 |
Epoch=25 0.964354 0.990974 |
Epoch =26 0.986338 0.994619 0.61113461788 |
Epoch =17 0.966243 0.988185 |
Epoch=19 0.968454 0.988842 |
0.997676 0.62093379110 |
seed=909 expand_train_630.json fgm=False |
2022_11_02_20_21_50 | Epoch =19 0.818384 0.937568 0.59469983287 |
Epoch =28 0.930541 0.975334 0.60771179775 |
Epoch=20 0.952989 0.961648 0.60115782034 |
Epoch =31 0.928331 0.97673 0.61745018178 |
Epoch =25 0.93317 0.980749 0.62231670502 |
0.978132 0.62578734849 |
seed=909 expand_train_632.json fgm=False |
2022_11_02_20_23_08 | Epoch =25 0.83736 0.960503 |
Epoch =14 0.936257 0.977144 |
Epoch=29 0.968587 0.984876 |
Epoch =19 0.949106 0.97852 |
Epoch =19 0.942543 0.977803 |
0.991369 0.60985007379 |
ernie-3.0-base-zh,model1,batch=128,4*V100 32G,seed=42
时间戳 | 1 | 2 | 3 | 4 | all |
---|---|---|---|---|---|
2022_11_03_19_40_33 train_630_aug_tail.json |
Epoch=20 0.87107 0.967542 |
Epoch =27 0.976572 0.992577 |
Epoch =13 0.978638 0.989724 |
Epoch =21 0.974908 0.992153 |
0.997476 0.62603740631 |
2022_11_03_19_41_25 train_632_aug_tail.json |
Epoch =12 0.872987 0.968018 0.61577661518 |
Epoch =33 0.978451 0.994023 |
Epoch=28 0.978055 0.992478 |
Epoch =20 0.974541 0.991169 |
0.99844 0.63234589689去掉第一折:0.62031840512 |
ernie-3.0-base-zh,model1,batch=128,4*V100 32G
时间戳 | 配置 | 1 | 2 | 3 | 4 | 5 | all |
---|---|---|---|---|---|---|---|
2022_11_05_05_35_07 | expand_train_6422.json seed=42 fgm K=4 |
Epoch =19 0.85822 0.942561 |
Epoch =30 0.954033 0.988508 |
Epoch=44 0.977698 0.987825 |
Epoch =46 0.973522 0.989223 |
无 | 0.992954 0.60793513753 |
2022_11_05_05_37_29 | expand_train_6422.json seed=42 fgm K=5 |
Epoch=22 0.848551 0.962322 |
Epoch=19 0.94463 0.962904 |
Epoch =34 0.961831 0.990747 |
Epoch =33 0.963921 0.987833 |
Epoch =41 0.981031 0.989617 |
0.992817 0.61795701255 |
2022_11_05_05_40_49 | expand_train_6422.json seed=909 nfgm K=4 |
Epoch =21 0.857822 0.939576 |
Epoch =23 0.947798 0.976549 |
Epoch=21 0.964533 0.978804 |
Epoch =28 0.94602 0.981704 |
无 | 0.967977 |
2022_11_05_05_41_19 | expand_train_6422.json seed=909 nfgm K=5 |
Epoch =26 0.837493 0.941728 不交 |
Epoch =40 0.936513 0.981417 不交 |
Epoch=19 0.95189 0.970197 不交 |
Epoch =42 0.957603 0.985129 不交 |
Epoch =42 0.947453 0.959921 不交 |
0.983114 不交 |
2022_11_05_05_44_35 | expand_train_6422_aug_tail.json seed=42 fgm K=5 |
Epoch =41 0.886191 0.976738 |
Epoch =11 0.979304 0.989131 |
Epoch =14 0.995935 0.995623 |
Epoch=34 0.988813 0.997246 |
Epoch =19 0.987683 0.994889 |
0.997153 0.62279051452 |
2022_11_05_05_45_50 | expand_train_6422_aug_tail.json seed=42 fgm K=4 |
Epoch =21 0.89401 0.972746 |
Epoch =30 0.989453 0.996302 |
Epoch =14 0.989562 0.992872 |
Epoch =24 0.988703 0.995577 |
无 | 0.99765 0.6272329318 |
2022_11_05_05_46_36 | expand_train_6422_aug_tail.json seed=909 nfgm K=4 |
Epoch =37 0.889075 0.971764 |
Epoch =21 0.977557 0.991733 |
Epoch=27 0.982924 0.994052 |
Epoch =25 0.980508 0.992498 |
无 | 0.998318 0.62790207858 |
2022_11_05_05_46_58 | expand_train_6422_aug_tail.json seed=909 nfgm K=5 |
Epoch =14 0.872622 0.972961 |
Epoch =16 0.974689 0.990382 |
Epoch =28 0.991149 0.995408 |
Epoch =25 0.977126 0.992539 |
Epoch =23 0.978972 0.993038 |
0.997585 |
2022_11_05_05_55_17 | expand_train_6422_aug_tail.json seed=42 fgm K=1 |
Epoch =25 0.966275 0.991975 0.62600679310 |
无 | 无 | 无 | 无 | 无 |
2022_11_05_08_36_58 | expand_train_6422.json seed=42 fgm K=1 |
Epoch =31 0.935153 0.98574 0.61366218811 |
无 | 无 | 无 | 无 | 无 |
2022_11_05_11_38_44 | expand_train_6422.json seed=909 nfgm K=1 |
Epoch =15 0.904939 0.943555 不交 |
无 | 无 | 无 | 无 | 无 |
2022_11_05_12_51_22 | expand_train_6422_aug_tail.json seed=909 nfgm K=1 |
Epoch =16 0.961666 0.988959 0.60882394030 |
无 | 无 | 无 | 无 | 无 |
ernie-3.0-base-zh,model1,batch=128,4*V100 32G,seed=42 fgm,K=3
时间戳 | 配置 | 1 | 2 | 3 | all |
---|---|---|---|---|---|
2022_11_06_04_34_51 | expand_train_aug_tail.json | Epoch = 15 0.898812 0.965936 |
Epoch = 20 0.963193 0.98506 |
Epoch = 27 0.968975 0.988606 |
0.997509 |
2022_11_06_04_35_15 | expand_train_6422_aug_tail.json | Epoch =25 0.914169 0.970832 |
Epoch =18 0.989666 0.994014 |
Epoch =12 0.981403 0.988101 |
0.994475 0.62673116125 |
2022_11_06_04_37_58 | expand_train_6422.json | Epoch =27 0.876217 0.951335 |
Epoch =33 0.968127 0.986179 |
Epoch =31 0.943877 0.979998 |
0.978263 |
2022_11_06_04_38_28 | expand_train_632.json | Epoch =20 0.883645 0.956869 |
Epoch=26 0.950254 0.978839 |
Epoch=23 0.956906 0.979368 |
0.993394 |
2022_11_06_09_05_33 | train_632_aug_tail.json | Epoch = 14 0.898623 0.966144 |
Epoch = 21 0.9794 0.990766 |
Epoch = 38 0.971669 0.990213 |
0.998695 |
model1,batch=128,4*V100 32G,seed=42 fgm
时间戳 | 配置 | 1 | 2 | 3 | all |
---|---|---|---|---|---|
2022_11_06_18_41_14 | chinese-roberta-wwm-ext expand_train_6422_aug_tail.json K=3 |
Epoch = 17 0.912253 0.970553 |
Epoch = 9 0.987278 0.990932 |
Epoch = 33 0.978513 0.992626 |
0.997274 |
2022_11_06_18_51_20 | chinese-roberta-wwm-ext expand_train_6422_aug_tail.json K=1 |
Epoch =14 0.963594 0.991064 |
无 | 无 | 无 |
2022_11_06_19_06_54 | chinese-roberta-wwm-ext expand_train_6460_aug_tail.json K=3 |
Epoch =20 0.926447 0.9753 |
Epoch =14 0.982489 0.991879 |
Epoch =26 0.982073 0.993274 |
0.997845 |
2022_11_06_19_07_09 | chinese-roberta-wwm-ext expand_train_6460_aug_tail.json K=1 |
Epoch =22 0.967037 0.992853 |
无 | 无 | 无 |
2022_11_06_19_08_24 | ernie-3.0-base-zh expand_train_6460_aug_tail.json K=3 |
Epoch =20 0.929239 0.976106 |
Epoch =20 0.989386 0.993937 |
Epoch =16 0.984976 0.992109 |
0.996779 |
2022_11_06_19_09_34 | ernie-3.0-base-zh expand_train_6460_aug_tail.json K=1 |
Epoch =29 0.967763 0.99287 |
无 | 无 | 无 |
ensemble/ensemble.xlsx
- 测试究竟有多少32(22也是一样的结果)
提交结果:0.00028845044
共有20839条测试数据,因此
所以共有109条标签为32的数据?
- 测试究竟有多少2
提交结果:0.00891031259
共有20839条测试数据,因此
所以共有3981条标签为2的数据?
- 测试究竟有多少35
提交结果:0.00034578147