-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_student.py
463 lines (375 loc) · 17.9 KB
/
train_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
"""
the general training framework
"""
from __future__ import print_function
import argparse
import json
# import tensorboard_logger as tb_logger
import logging
import math
import os
import re
import time
import numpy
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from crd.criterion import CRDLoss
from dataset.cifar100 import (get_cifar100_dataloaders,
get_cifar100_dataloaders_sample)
from dataset.imagenet import get_imagenet_dataloader, imagenet_list
from distiller_zoo import PKT, DistillKL, DKDloss, Similarity, VIDLoss
from helper.loops import train_distill as train
from helper.loops import validate
from helper.util import (adjust_learning_rate, parser_config_save,
reduce_tensor, save_dict_to_json)
from models import model_dict
from models.temp_global import Global_T
from models.util import SRRL, ConvReg, Embed, LinearEmbed, SelfA
split_symbol = '~' if os.name == 'nt' else ':'
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# basic
parser.add_argument('--print-freq', type=int, default=100, help='print frequency')
parser.add_argument('--batch_size', type=int, default=128, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=240, help='number of training epochs')
parser.add_argument('--gpu_id', type=str, default='0', help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--experiments_dir', type=str, default='models',help='Directory name to save the model, log, config')
parser.add_argument('--experiments_name', type=str, default='baseline')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.1, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='150,180,210', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument('--dataset', type=str, default='cifar100', choices=['cifar100', 'imagenet', 'imagenette'], help='dataset')
# model
parser.add_argument('--model_s', type=str, default='resnet8',
choices=['resnet8', 'resnet14', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110',
'ResNet18', 'ResNet34', 'resnet8x4_double',
'resnet8x4', 'resnet32x4', 'wrn_16_1', 'wrn_16_2', 'wrn_40_1', 'wrn_40_2', 'wrn_50_2',
'vgg8', 'vgg11', 'vgg13', 'vgg11_imagenet', 'vgg16', 'vgg19', 'ResNet50',
'MobileNetV2', 'ShuffleV1', 'ShuffleV2', 'ShuffleV2_Imagenet', 'MobileNetV2_Imagenet',
'shufflenet_v2_x0_5', 'shufflenet_v2_x2_0', 'ResNet18Double'])
parser.add_argument('--path-t', type=str, default=None, help='teacher model snapshot')
# distillation
parser.add_argument('--distill', type=str, default='kd', choices=['kd', 'similarity', 'vid',
'pkt', 'crd', 'dkd', 'srrl'])
parser.add_argument('--trial', type=str, default='1', help='trial id')
parser.add_argument('-r', '--gamma', type=float, default=0.1, help='weight for classification')
parser.add_argument('-a', '--alpha', type=float, default=0.9, help='weight balance for KD')
parser.add_argument('-b', '--beta', type=float, default=0.0, help='weight balance for other losses')
# KL distillation
parser.add_argument('--kd_T', type=float, default=4, help='default temperature for KD distillation')
# CTKD distillation
parser.add_argument('--have_mlp', type=int, default=0)
parser.add_argument('--mlp_name', type=str, default='global')
parser.add_argument('--t_start', type=float, default=1)
parser.add_argument('--t_end', type=float, default=20)
parser.add_argument('--cosine_decay', type=int, default=1)
parser.add_argument('--decay_max', type=float, default=0)
parser.add_argument('--decay_min', type=float, default=0)
parser.add_argument('--decay_loops', type=float, default=0)
# DKD distillation
parser.add_argument('--dkd_alpha', default=1, type=float)
parser.add_argument('--dkd_beta', default=2, type=float)
# NCE distillation
parser.add_argument('--feat_dim', default=128, type=int, help='feature dimension')
parser.add_argument('--mode', default='exact', type=str, choices=['exact', 'relax'])
parser.add_argument('--nce_k', default=16384, type=int, help='number of negative samples for NCE')
parser.add_argument('--nce_t', default=0.07, type=float, help='temperature parameter for softmax')
parser.add_argument('--nce_m', default=0.5, type=float, help='momentum for non-parametric updates')
parser.add_argument('--save_model', action='store_true')
# switch for edge transformation
parser.add_argument('--no_edge_transform', action='store_true') # default=false
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:8080', type=str,
help='url used to set up distributed training')
parser.add_argument('--deterministic', action='store_true', help='Make results reproducible')
opt = parser.parse_args()
# set different learning rate from these 4 models
if opt.model_s in ['MobileNetV2', 'ShuffleV1', 'ShuffleV2']:
opt.learning_rate = 0.01
# set the path of model and tensorboard
opt.model_path = './save/student_model'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_t = get_teacher_name(opt.path_t)
opt.model_name = os.path.join(opt.experiments_dir, opt.experiments_name)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
parser_config_save(opt, opt.save_folder)
return opt
def get_teacher_name(model_path):
"""parse teacher name"""
directory = model_path.split('/')[-2]
pattern = ''.join(['S', split_symbol, '(.+)', '_T', split_symbol])
name_match = re.match(pattern, directory)
if name_match:
return name_match[1]
segments = directory.split('_')
if segments[0] == 'wrn':
return segments[0] + '_' + segments[1] + '_' + segments[2]
if segments[0] == 'resnext50':
return segments[0] + '_' + segments[1]
if segments[0] == 'vgg13' and segments[1] == 'imagenet':
return segments[0] + '_' + segments[1]
return segments[0]
def load_teacher(model_path, n_cls, gpu=None, opt=None):
print('==> loading teacher model')
model_t = get_teacher_name(model_path)
model = model_dict[model_t](num_classes=n_cls)
# TODO: reduce size of the teacher saved in train_teacher.py
map_location = None if gpu is None else {'cuda:0': 'cuda:%d' % (gpu if opt.multiprocessing_distributed else 0)}
if opt.dataset == 'cifar100':
model.load_state_dict(torch.load(model_path, map_location=map_location)['model'])
elif opt.dataset == 'imagenet':
checkpoint = torch.load(model_path, map_location=map_location)
# new_state_dict = {}
# for k,v in checkpoint['model'].items():
# new_state_dict[k[7:]] = v
# model.load_state_dict(checkpoint['state'])
model.load_state_dict(checkpoint)
print('==> done')
return model
class CosineDecay(object):
def __init__(self,
max_value,
min_value,
num_loops):
self._max_value = max_value
self._min_value = min_value
self._num_loops = num_loops
def get_value(self, i):
if i < 0:
i = 0
if i >= self._num_loops:
i = self._num_loops
value = (math.cos(i * math.pi / self._num_loops) + 1.0) * 0.5
value = value * (self._max_value - self._min_value) + self._min_value
return value
class LinearDecay(object):
def __init__(self,
max_value,
min_value,
num_loops):
self._max_value = max_value
self._min_value = min_value
self._num_loops = num_loops
def get_value(self, i):
if i < 0:
i = 0
if i >= self._num_loops:
i = self._num_loops - 1
value = (self._max_value - self._min_value) / self._num_loops
value = i * (-value)
return value
total_time = time.time()
best_acc = 0
def main():
opt = parse_option()
# ASSIGN CUDA_ID
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
ngpus_per_node = torch.cuda.device_count()
opt.ngpus_per_node = ngpus_per_node
if opt.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
world_size = 1
opt.world_size = ngpus_per_node * world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, opt))
else:
main_worker(None if ngpus_per_node > 1 else opt.gpu_id, ngpus_per_node, opt)
def main_worker(gpu, ngpus_per_node, opt):
global best_acc, total_time
opt.gpu = int(gpu)
opt.gpu_id = int(gpu)
if opt.gpu is not None:
print("Use GPU: {} for training".format(opt.gpu))
if opt.multiprocessing_distributed:
# Only one node now.
opt.rank = gpu
dist_backend = 'nccl'
dist.init_process_group(backend=dist_backend, init_method=opt.dist_url,
world_size=opt.world_size, rank=opt.rank)
opt.batch_size = int(opt.batch_size / ngpus_per_node)
opt.num_workers = int((opt.num_workers + ngpus_per_node - 1) / ngpus_per_node)
if opt.deterministic:
torch.manual_seed(27)
cudnn.deterministic = False
cudnn.benchmark = True
numpy.random.seed(27)
class_num_map = {
'cifar100': 100,
'imagenet': 1000,
'imagenette': 10,
}
if opt.dataset not in class_num_map:
raise NotImplementedError(opt.dataset)
n_cls = class_num_map[opt.dataset]
# model
model_t = load_teacher(opt.path_t, n_cls, opt.gpu, opt)
module_args = {'num_classes': n_cls}
model_s = model_dict[opt.model_s](**module_args)
if opt.dataset == 'cifar100':
data = torch.randn(2, 3, 32, 32)
elif opt.dataset == 'imagenet':
data = torch.randn(2, 3, 224, 224)
mlp = None
if opt.have_mlp:
if opt.mlp_name == 'global':
mlp = Global_T()
else:
print('mlp name wrong')
model_t.eval()
model_s.eval()
feat_t, _ = model_t(data, is_feat=True)
feat_s, _ = model_s(data, is_feat=True)
module_list = nn.ModuleList([])
module_list.append(model_s)
trainable_list = nn.ModuleList([])
trainable_list.append(model_s)
trainable_list.append(mlp)
criterion_cls = nn.CrossEntropyLoss()
criterion_div = DistillKL()
if opt.distill == 'kd':
criterion_kd = DistillKL()
elif opt.distill == 'crd':
opt.s_dim = feat_s[-1].shape[1]
opt.t_dim = feat_t[-1].shape[1]
opt.n_data = 50000
criterion_kd = CRDLoss(opt)
module_list.append(criterion_kd.embed_s)
module_list.append(criterion_kd.embed_t)
trainable_list.append(criterion_kd.embed_s)
trainable_list.append(criterion_kd.embed_t)
elif opt.distill == 'similarity':
criterion_kd = Similarity()
elif opt.distill == 'pkt':
criterion_kd = PKT()
elif opt.distill == 'vid':
s_n = [f.shape[1] for f in feat_s[1:-1]]
t_n = [f.shape[1] for f in feat_t[1:-1]]
criterion_kd = nn.ModuleList(
[VIDLoss(s, t, t) for s, t in zip(s_n, t_n)]
)
# add this as some parameters in VIDLoss need to be updated
trainable_list.append(criterion_kd)
elif opt.distill == 'dkd':
criterion_kd = DKDloss()
elif opt.distill == 'srrl':
s_n = feat_s[-1].shape[1]
t_n = feat_t[-1].shape[1]
model_fmsr = SRRL(s_n= s_n, t_n=t_n)
criterion_kd = nn.MSELoss()
module_list.append(model_fmsr)
trainable_list.append(model_fmsr)
else:
raise NotImplementedError(opt.distill)
criterion_list = nn.ModuleList([])
criterion_list.append(criterion_cls) # classification loss
criterion_list.append(criterion_div) # KL divergence loss, original knowledge distillation
criterion_list.append(criterion_kd) # other knowledge distillation loss
module_list.append(model_t)
if torch.cuda.is_available():
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if opt.multiprocessing_distributed:
if opt.gpu is not None:
torch.cuda.set_device(opt.gpu)
module_list.cuda(opt.gpu)
distributed_modules = []
for module in module_list:
DDP = torch.nn.parallel.DistributedDataParallel
distributed_modules.append(DDP(module, device_ids=[opt.gpu]))
module_list = distributed_modules
criterion_list.cuda(opt.gpu)
else:
print('multiprocessing_distributed must be with a specifiec gpu id')
else:
criterion_list.cuda()
module_list.cuda()
if not opt.deterministic:
cudnn.benchmark = True
optimizer = optim.SGD(trainable_list.parameters(),
lr=opt.learning_rate,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
# dataloader
if opt.dataset == 'cifar100':
if opt.distill in ['crd']:
train_loader, val_loader, n_data = get_cifar100_dataloaders_sample(batch_size=opt.batch_size,
num_workers=opt.num_workers,
k=opt.nce_k,
mode=opt.mode)
else:
train_loader, val_loader = get_cifar100_dataloaders(batch_size=opt.batch_size,
num_workers=opt.num_workers)
elif opt.dataset in imagenet_list:
train_loader, val_loader, train_sampler = get_imagenet_dataloader(dataset=opt.dataset, batch_size=opt.batch_size,
num_workers=opt.num_workers,
multiprocessing_distributed=opt.multiprocessing_distributed)
else:
raise NotImplementedError(opt.dataset)
if opt.cosine_decay:
gradient_decay = CosineDecay(max_value=opt.decay_max, min_value=opt.decay_min, num_loops=opt.decay_loops)
else:
gradient_decay = LinearDecay(max_value=opt.decay_max, min_value=opt.decay_min, num_loops=opt.decay_loops)
decay_value = 1
best_acc = 0
for epoch in range(1, opt.epochs + 1):
torch.cuda.empty_cache()
if opt.multiprocessing_distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(epoch, opt, optimizer)
print("==> training...")
if opt.have_mlp:
decay_value = gradient_decay.get_value(epoch)
train_acc, train_acc_top5, train_loss, temp = train(epoch, train_loader, module_list, mlp, decay_value, criterion_list, optimizer, opt)
if opt.multiprocessing_distributed:
metrics = torch.tensor([train_acc, train_acc_top5, train_loss]).cuda(opt.gpu, non_blocking=True)
reduced = reduce_tensor(metrics, opt.world_size if 'world_size' in opt else 1)
train_acc, train_acc_top5, train_loss = reduced.tolist()
return_pack = validate(val_loader, model_s, criterion_cls, opt)
test_acc, test_acc_top5, _ = return_pack
best_model = False
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
if test_acc > best_acc:
best_acc = test_acc
best_model = True
state = {
'epoch': epoch,
'model': model_s.state_dict(),
'best_acc': best_acc,
}
save_file = os.path.join(opt.save_folder, '{}_best.pth'.format(opt.model_s))
test_merics = {
'test_acc': test_acc,
'test_acc_top5': test_acc_top5,
'best_acc': best_acc,
'epoch': epoch,
'temp': json.dumps(temp.cpu().detach().numpy()[0].tolist()),
'decay_value': decay_value}
save_dict_to_json(test_merics, os.path.join(opt.save_folder, "test_best_metrics.json"))
if epoch > opt.epochs/2:
if best_model:
best_model=False
if opt.save_model:
torch.save(state, save_file)
if __name__ == '__main__':
main()