-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathmodel.py
179 lines (125 loc) · 4.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch
from torch import nn
import numpy as np
#import matplotlib.pyplot as plt
from torch.autograd import Variable
def seq_max_pool(x):
"""seq是[None, seq_len, s_size]的格式,
mask是[None, seq_len, 1]的格式,先除去mask部分,
然后再做maxpooling。
"""
seq, mask = x
seq = seq - (1 - mask) * 1e10
return torch.max(seq, 1)
def seq_and_vec(x):
"""seq是[None, seq_len, s_size]的格式,
vec是[None, v_size]的格式,将vec重复seq_len次,拼到seq上,
得到[None, seq_len, s_size+v_size]的向量。
"""
seq , vec = x
vec = torch.unsqueeze(vec,1)
vec = torch.zeros_like(seq[:, :, :1]) + vec
return torch.cat([seq, vec], 2)
def seq_gather(x):
"""seq是[None, seq_len, s_size]的格式,
idxs是[None, 1]的格式,在seq的第i个序列中选出第idxs[i]个向量,
最终输出[None, s_size]的向量。
"""
seq, idxs = x
batch_idxs = torch.arange(0,seq.size(0)).cuda()
batch_idxs = torch.unsqueeze(batch_idxs,1)
idxs = torch.cat([batch_idxs, idxs], 1)
res = []
for i in range(idxs.size(0)):
vec = seq[idxs[i][0],idxs[i][1],:]
res.append(torch.unsqueeze(vec,0))
res = torch.cat(res)
return res
class s_model(nn.Module):
def __init__(self,word_dict_length,word_emb_size,lstm_hidden_size):
super(s_model,self).__init__()
self.embeds = nn.Embedding(word_dict_length, word_emb_size).cuda()
self.fc1_dropout = nn.Sequential(
nn.Dropout(0.25).cuda(), # drop 20% of the neuron
).cuda()
self.lstm1 = nn.LSTM(
input_size = word_emb_size,
hidden_size = int(word_emb_size/2),
num_layers = 1,
batch_first = True,
bidirectional = True
).cuda()
self.lstm2 = nn.LSTM(
input_size = word_emb_size,
hidden_size = int(word_emb_size/2),
num_layers = 1,
batch_first = True,
bidirectional = True
).cuda()
self.conv1 = nn.Sequential(
nn.Conv1d(
in_channels=word_emb_size*2, #输入的深度
out_channels=word_emb_size,#filter 的个数,输出的高度
kernel_size = 3,#filter的长与宽
stride=1,#每隔多少步跳一下
padding=1,#周围围上一圈 if stride= 1, pading=(kernel_size-1)/2
).cuda(),
nn.ReLU().cuda(),
).cuda()
self.fc_ps1 = nn.Sequential(
nn.Linear(word_emb_size,1),
).cuda()
self.fc_ps2 = nn.Sequential(
nn.Linear(word_emb_size,1),
).cuda()
def forward(self,t):
mask = torch.gt(torch.unsqueeze(t,2),0).type(torch.cuda.FloatTensor) #(batch_size,sent_len,1)
mask.requires_grad = False
outs = self.embeds(t)
t = outs
t = self.fc1_dropout(t)
t = t.mul(mask) # (batch_size,sent_len,char_size)
t, (h_n, c_n) = self.lstm1(t,None)
t, (h_n, c_n) = self.lstm2(t,None)
t_max,t_max_index = seq_max_pool([t,mask])
t_dim = list(t.size())[-1]
h = seq_and_vec([t, t_max])
h = h.permute(0,2,1)
h = self.conv1(h)
h = h.permute(0,2,1)
ps1 = self.fc_ps1(h)
ps2 = self.fc_ps2(h)
return [ps1.cuda(),ps2.cuda(),t.cuda(),t_max.cuda(),mask.cuda()]
class po_model(nn.Module):
def __init__(self,word_dict_length,word_emb_size,lstm_hidden_size,num_classes):
super(po_model,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv1d(
in_channels=word_emb_size*4, #输入的深度
out_channels=word_emb_size,#filter 的个数,输出的高度
kernel_size = 3,#filter的长与宽
stride=1,#每隔多少步跳一下
padding=1,#周围围上一圈 if stride= 1, pading=(kernel_size-1)/2
).cuda(),
nn.ReLU().cuda(),
).cuda()
self.fc_ps1 = nn.Sequential(
nn.Linear(word_emb_size,num_classes+1).cuda(),
# nn.Softmax(),
).cuda()
self.fc_ps2 = nn.Sequential(
nn.Linear(word_emb_size,num_classes+1).cuda(),
# nn.Softmax(),
).cuda()
def forward(self,t,t_max,k1,k2):
k1 = seq_gather([t,k1])
k2 = seq_gather([t,k2])
k = torch.cat([k1,k2],1)
h = seq_and_vec([t,t_max])
h = seq_and_vec([h,k])
h = h.permute(0,2,1)
h = self.conv1(h)
h = h.permute(0,2,1)
po1 = self.fc_ps1(h)
po2 = self.fc_ps2(h)
return [po1.cuda(),po2.cuda()]