-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict-contacts.py
216 lines (191 loc) · 5.77 KB
/
predict-contacts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
'''
File: Contains the code to predict contacts
'''
import os
import sys
import numpy as np
import datetime
import pickle
import getopt
from tensorflow.python.keras import layers
from tensorflow.python.keras.layers import Input, Convolution2D, Activation, add, Dropout, BatchNormalization
from tensorflow.python.keras.models import Model
if sys.version_info < (3,0,0):
print('Python 3 required!!!')
sys.exit(1)
def usage():
print('Usage:')
print(sys.argv[0] + ' <-w file_weights> <-p file_pkl> <-o outrr>')
try:
opts, args = getopt.getopt(sys.argv[1:], "w:p:o:h")
except getopt.GetoptError as err:
print(err)
usage()
sys.exit(2)
wts = ''
pkl = ''
rr = ''
for o, a in opts:
if o in ("-h", "--help"):
usage()
sys.exit()
elif o in ("-w"):
wts = os.path.abspath(a)
elif o in ("-p"):
pkl = os.path.abspath(a)
elif o in ("-o"):
rr = os.path.abspath(a)
else:
assert False, "Error!! unhandled option!!"
if len(wts) < 2:
print('wts file undefined!')
usage()
sys.exit()
if len(pkl) < 2:
print('in pkl undefined!')
usage()
sys.exit()
if len(rr) < 2:
print('our rr undefined!')
usage()
sys.exit()
pad_size = 10
expected_n_channels = 57
OUTL = 1024
def save_contacts_rr(seq, pred_matrix, file_rr):
rr = open(file_rr, 'w')
rr.write(seq + "\n")
P = np.copy(pred_matrix)
L = len(P[:])
for j in range(0, L):
for k in range(j, L):
P[j, k] = (P[k, j, 0] + P[j, k, 0]) / 2.0
for j in range(0, L):
for k in range(j, L):
if abs(j - k) < 5:
continue
rr.write("%i %i 0 8 %.5f\n" %(j+1, k+1, (P[j][k])) )
rr.close()
print('Written RR ' + file_rr + ' !')
def get_feature(infile, expected_n_channels):
features = pickle.load(open(infile, 'rb'))
l = len(features['seq'])
seq = features['seq']
# Create X and Y placeholders
X = np.full((l, l, expected_n_channels), 0.0)
# Add secondary structure
ss = features['ss']
assert ss.shape == (3, l)
fi = 0
for j in range(3):
a = np.repeat(ss[j].reshape(1, l), l, axis = 0)
X[:, :, fi] = a
fi += 1
X[:, :, fi] = a.T
fi += 1
# Add PSSM
pssm = features['pssm']
assert pssm.shape == (l, 22)
for j in range(22):
a = np.repeat(pssm[:, j].reshape(1, l), l, axis = 0)
X[:, :, fi] = a
fi += 1
X[:, :, fi] = a.T
fi += 1
# Add SA
sa = features['sa']
assert sa.shape == (l, )
a = np.repeat(sa.reshape(1, l), l, axis = 0)
X[:, :, fi] = a
fi += 1
X[:, :, fi] = a.T
fi += 1
# Add entrophy
entropy = features['entropy']
assert entropy.shape == (l, )
a = np.repeat(entropy.reshape(1, l), l, axis = 0)
X[:, :, fi] = a
fi += 1
X[:, :, fi] = a.T
fi += 1
# Add CCMpred
ccmpred = features['ccmpred']
assert ccmpred.shape == ((l, l))
X[:, :, fi] = ccmpred
fi += 1
# Add FreeContact
freecon = features['freecon']
assert freecon.shape == ((l, l))
X[:, :, fi] = freecon
fi += 1
# Add potential
potential = features['potential']
assert potential.shape == ((l, l))
X[:, :, fi] = potential
fi += 1
assert fi == expected_n_channels
assert X.max() < 100.0
assert X.min() > -100.0
return X
# Architecture DEEPCON (original)
def deepcon_rdd(L, num_blocks, width, expected_n_channels):
print('')
print('Model params:')
print('L', L)
print('num_blocks', num_blocks)
print('width', width)
print('expected_n_channels', expected_n_channels)
print('')
dropout_value = 0.3
my_input = Input(shape = (L, L, expected_n_channels))
tower = BatchNormalization()(my_input)
tower = Activation('relu')(tower)
tower = Convolution2D(width, 1, padding = 'same')(tower)
n_channels = width
d_rate = 1
for i in range(num_blocks):
block = BatchNormalization()(tower)
block = Activation('relu')(block)
block = Convolution2D(n_channels, kernel_size = (3, 3), padding = 'same')(block)
block = Dropout(dropout_value)(block)
block = Activation('relu')(block)
block = Convolution2D(n_channels, kernel_size = (3, 3), dilation_rate=(d_rate, d_rate), padding = 'same')(block)
tower = add([block, tower])
if d_rate == 1:
d_rate = 2
elif d_rate == 2:
d_rate = 4
else:
d_rate = 1
tower = BatchNormalization()(tower)
tower = Activation('relu')(tower)
tower = Convolution2D(1, 3, padding = 'same')(tower)
tower = Activation('sigmoid')(tower)
model = Model(my_input, tower)
return model
features = pickle.load(open(pkl, 'rb'))
l = len(features['seq'])
seq = features['seq']
OUTL = l + pad_size
X = get_feature(pkl, expected_n_channels)
assert len(X[0, 0, :]) == expected_n_channels
l = len(X[:, 0, 0])
XX = np.full((1, OUTL, OUTL, expected_n_channels), 0.0)
Xpadded = np.zeros((l + pad_size, l + pad_size, len(X[0, 0, :])))
Xpadded[int(pad_size/2) : l+int(pad_size/2), int(pad_size/2) : l+int(pad_size/2), :] = X
l = len(Xpadded[:, 0, 0])
XX[0, :l, :l, :] = Xpadded
print('')
print('Channel summaries:')
print(' Channel Avg Max Sum')
for i in range(len(X[0, 0, :])):
(m, s, a) = (X[:, :, i].flatten().max(), X[:, :, i].flatten().sum(), X[:, :, i].flatten().mean())
print(' %7s %10.4f %10.4f %10.1f' % (i+1, a, m, s))
model = deepcon_rdd(OUTL, 128, 64, expected_n_channels)
model.load_weights(wts)
P = model.predict(XX)
# Remove padding, i.e. shift up and left by int(pad_size/2)
P[:, :OUTL-pad_size, :OUTL-pad_size, :] = P[:, int(pad_size/2) : OUTL-int(pad_size/2), int(pad_size/2) : OUTL-int(pad_size/2), :]
print('')
print('Save predictions..')
save_contacts_rr(seq, P[0, :len(seq), :len(seq)], rr)