-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbayes.py
185 lines (165 loc) · 6.71 KB
/
bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 23 14:04:36 2018
@author: zhaolei
"""
import numpy as np
import bayes
import chardet
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set([]) #greate an empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #greate the union of two sets
return list(vocabSet)
def setOfWords2Vec(vocabList , inputSet):
"""
input one line
"""
returnVec = [0]*len(vocabList) #greate a vector of all 0
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print ("the word : %s is not in my Vocabulary") % (word)
return returnVec
def trainNB0 (trainMatrix,trainCategory):
"""
trainMatrix: ndarray
two-class problem,
"""
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = np.ones (numWords) #to lessen the impact of that when we multiply the together we get 0
p1Num = np.ones(numWords) #we 'll initialize all of out occurrence counts to 1
p1Denom = 2.0 #to lessen the impact of that when we multiply the together we get 0
p0Denom = 2.0 #we'll initialize the denominators to 2
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num/p1Denom) #element-wise multiplication
p0Vect = np.log(p0Num/p0Denom ) #change to log()
return p0Vect, p1Vect, pAbusive
def classifyNB(vec2Classify, p0Vec , p1Vec , pClass1):
"""
vec2Classify: a vector to classify
"""
p1 = sum(vec2Classify *p1Vec) + np.log(pClass1) #element-wise multiplication
p0 = sum(vec2Classify *p0Vec) + np.log(1.0-pClass1)
if p1 > p0:
return 1
else:
return 0
def testingNB():
listOPosts, listClasses = bayes.loadDataSet()
myVocabList = bayes.createVocabList(listOPosts)
print (myVocabList)
trainMat = []
for postinDoc in listOPosts:
trainMat.append( bayes.setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V ,pAb = bayes.trainNB0(trainMat, listClasses)
testEntry = ['love', 'my', 'dalmation']
print
thisDoc = np.array(bayes.setOfWords2Vec(myVocabList, testEntry))
print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb) )
testEntry = ['stupid', 'garbage']
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
def bagOfWords2VecMN(vocabList, inputSet):
"""
naive Bayes bag-of-words model
"""
returnVec = [0]*len(vocabList) #greate a vector of all 0
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
else:
print ("the word : %s is not in my Vocabulary") % (word)
return returnVec
def textParse(bigString):
"""
file parsing
"""
import re
# regEx = re.compile('\\W*')
# listOfTokens = regEx.split(bigString)
if isinstance(bigString,str) :
listOfTokens = re.split(r'\W*', bigString)
else:
print (type(bigString))
# print ("listOfTokens is :%s" %listOfTokens)
return [tok.lower() for tok in listOfTokens if len(tok) > 2 ]
def spamTest():
docList = []
classList = []
fullText =[]
for i in range (1,26): #load and parse text files
# open by byte
textContent = open('./data/email/spam/%d.txt' % i, 'rb').read()
#如果读出的文件有特殊编码,则检测编码格式,用特定的编码解码二进制内容,转变成字符
textContent = textContent.decode(chardet.detect(textContent)['encoding'])
if isinstance(textContent,str) :
wordList = textParse(textContent)
else:
print ("errro : ",'./data/email/spam/%d.txt' % i)
print (type(textContent))
print (textContent)
# wordList = textParse(open('./data/email/spam/%d.txt' % i, 'rb').read())
#如果读出的文件有特殊编码,则检测编码格式,用特定的编码解码二进制内容,转变成字符
#print ('./data/email/spam/%d.txt' % i )
# print (type(wordList))
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
textContent = open('./data/email/ham/%d.txt' % i, 'rb').read()
textContent = textContent.decode(chardet.detect(textContent)['encoding'])
if isinstance(textContent,str) :
wordList = textContent
wordList = textParse(textContent)
else:
print ("errro : ",'./data/email/ham/%d.txt' % i)
print (type(textContent))
print (textContent)
# wordList = textParse(open('./data/email/ham/%d.txt' % i ,'rb').read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)
trainingSet = list(range(50))
testSet = []
for i in range(10):
randIndex = int(np.random.uniform(0,len(trainingSet)) ) #randomly create the training set
testSet.append( trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat = []
trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList,docList[docIndex] ))
trainClasses.append(classList[docIndex])
p0V, p1V ,pAb = bayes.trainNB0(trainMat, trainClasses)
# print (p0V, p1V ,pAb)
# print (vocabList)
errorCount = 0
for docIndex in testSet:
textVector = setOfWords2Vec(vocabList,docList[docIndex])
if classifyNB(textVector, p0V , p1V , pAb) != classList[docIndex]:
errorCount += 1
print ("the error rate is :" ,(float(errorCount)/len(testSet)),'\n',"the number of error is :",errorCount)
if __name__ =='__main__':
spamTest()
# mySent = 'this book is the best book on pyhton ro M.L. I .'
# listOfTokens = textParse(mySent)