-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdatasets.py
151 lines (114 loc) · 5.35 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from torch.utils.data import Dataset, DataLoader
import lmdb
from utils import deserialize
import numpy as np
import torch
class TrainSubgraphDataset(Dataset):
def __init__(self, args):
self.args = args
self.env = lmdb.open(args.db_path, readonly=True, max_dbs=5, lock=False)
self.subgraphs_db = self.env.open_db("train_subgraphs".encode())
def __len__(self):
return self.args.num_train_subgraph
@staticmethod
def collate_fn(data):
return data
def __getitem__(self, idx):
with self.env.begin(db=self.subgraphs_db) as txn:
str_id = '{:08}'.format(idx).encode('ascii')
sup_tri, que_tri, hr2t, rt2h = deserialize(txn.get(str_id))
nentity = len(np.unique(np.array(sup_tri)[:, [0, 2]]))
que_neg_tail_ent = [np.random.choice(np.delete(np.arange(nentity), hr2t[(h, r)]),
self.args.metatrain_num_neg) for h, r, t in que_tri]
que_neg_head_ent = [np.random.choice(np.delete(np.arange(nentity), rt2h[(r, t)]),
self.args.metatrain_num_neg) for h, r, t in que_tri]
return torch.tensor(sup_tri), torch.tensor(que_tri), \
torch.tensor(que_neg_tail_ent), torch.tensor(que_neg_head_ent)
class ValidSubgraphDataset(Dataset):
def __init__(self, args):
self.args = args
self.env = lmdb.open(args.db_path, readonly=True, max_dbs=5, lock=False)
self.subgraphs_db = self.env.open_db("valid_subgraphs".encode())
def __len__(self):
txn = self.env.begin(db=self.subgraphs_db)
num = txn.stat()['entries']
return num
@staticmethod
def collate_fn(data):
return data
def __getitem__(self, idx):
with self.env.begin(db=self.subgraphs_db) as txn:
str_id = '{:08}'.format(idx).encode('ascii')
sup_tri, que_tri, hr2t, rt2h = deserialize(txn.get(str_id))
nentity = len(np.unique(np.array(sup_tri)[:, [0, 2]]))
que_dataset = KGEEvalDataset(self.args, que_tri, nentity, hr2t, rt2h)
que_dataloader = DataLoader(que_dataset, batch_size=len(que_tri),
collate_fn=KGEEvalDataset.collate_fn)
return torch.tensor(sup_tri), que_dataloader
class KGETrainDataset(Dataset):
def __init__(self, args, train_triples, num_ent, num_neg, hr2t, rt2h):
self.args = args
self.triples = train_triples
self.num_ent = num_ent
self.num_neg = num_neg
self.hr2t = hr2t
self.rt2h = rt2h
def __len__(self):
return len(self.triples)
def __getitem__(self, idx):
pos_triple = self.triples[idx]
h, r, t = pos_triple
neg_tail_ent = np.random.choice(np.delete(np.arange(self.num_ent), self.hr2t[(h, r)]),
self.num_neg)
neg_head_ent = np.random.choice(np.delete(np.arange(self.num_ent), self.rt2h[(r, t)]),
self.num_neg)
pos_triple = torch.LongTensor(pos_triple)
neg_tail_ent = torch.from_numpy(neg_tail_ent)
neg_head_ent = torch.from_numpy(neg_head_ent)
return pos_triple, neg_tail_ent, neg_head_ent
@staticmethod
def collate_fn(data):
pos_triple = torch.stack([_[0] for _ in data], dim=0)
neg_tail_ent = torch.stack([_[1] for _ in data], dim=0)
neg_head_ent = torch.stack([_[2] for _ in data], dim=0)
return pos_triple, neg_tail_ent, neg_head_ent
class KGEEvalDataset(Dataset):
def __init__(self, args, eval_triples, num_ent, hr2t, rt2h):
self.args = args
self.triples = eval_triples
self.num_ent = num_ent
self.hr2t = hr2t
self.rt2h = rt2h
self.num_cand = 'all'
def __len__(self):
return len(self.triples)
def __getitem__(self, idx):
pos_triple = self.triples[idx]
h, r, t = pos_triple
if self.num_cand == 'all':
tail_label, head_label = self.get_label(self.hr2t[(h, r)], self.rt2h[(r, t)])
pos_triple = torch.LongTensor(pos_triple)
return pos_triple, tail_label, head_label
else:
neg_tail_cand = np.random.choice(np.delete(np.arange(self.num_ent), self.hr2t[(h, r)]),
self.num_cand)
neg_head_cand = np.random.choice(np.delete(np.arange(self.num_ent), self.rt2h[(r, t)]),
self.num_cand)
tail_cand = torch.from_numpy(np.concatenate(([t], neg_tail_cand)))
head_cand = torch.from_numpy(np.concatenate(([h], neg_head_cand)))
pos_triple = torch.LongTensor(pos_triple)
return pos_triple, tail_cand, head_cand
def get_label(self, true_tail, true_head):
y_tail = np.zeros([self.num_ent], dtype=np.float32)
for e in true_tail:
y_tail[e] = 1.0
y_head = np.zeros([self.num_ent], dtype=np.float32)
for e in true_head:
y_head[e] = 1.0
return torch.FloatTensor(y_tail), torch.FloatTensor(y_head)
@staticmethod
def collate_fn(data):
pos_triple = torch.stack([_[0] for _ in data], dim=0)
tail_label_or_cand = torch.stack([_[1] for _ in data], dim=0)
head_label_or_cand = torch.stack([_[2] for _ in data], dim=0)
return pos_triple, tail_label_or_cand, head_label_or_cand