-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_emnist.py
77 lines (54 loc) · 2.32 KB
/
eval_emnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- coding: utf-8 -*-
"""
@date: 2023/10/9 下午4:42
@file: eval.py
@author: zj
@description:
Usage - Single-GPU eval:
$ python eval_emnist.py crnn_tiny-emnist.pth ../datasets/emnist/
$ python eval_emnist.py crnn-emnist.pth ../datasets/emnist/ --not-tiny
"""
import argparse
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from utils.general import load_ocr_model
from utils.dataset.emnist import EMNISTDataset, DIGITS_CHARS
from utils.evaluator import Evaluator
def parse_opt():
parser = argparse.ArgumentParser(description='Eval CRNN with EMNIST')
parser.add_argument('pretrained', metavar='PRETRAINED', type=str, help='path to pretrained model')
parser.add_argument('val_root', metavar='DIR', type=str, help='path to val dataset')
parser.add_argument('--use-lstm', action='store_true', help='use nn.LSTM instead of nn.GRU')
parser.add_argument('--not-tiny', action='store_true', help='Use this flag to specify non-tiny mode')
args = parser.parse_args()
print(f"args: {args}")
return args
@torch.no_grad()
def val(args, val_root, pretrained):
img_h = 32
digits_per_sequence = 5
model, device = load_ocr_model(pretrained=pretrained, shape=(1, 1, img_h, digits_per_sequence * img_h),
num_classes=len(DIGITS_CHARS), not_tiny=args.not_tiny, use_lstm=args.use_lstm)
val_dataset = EMNISTDataset(val_root, is_train=False, num_of_sequences=50000,
digits_per_sequence=digits_per_sequence, img_h=img_h)
batch_size = 1
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, drop_last=False,
pin_memory=True)
blank_label = len(DIGITS_CHARS) - 1
emnist_evaluator = Evaluator(blank_label=blank_label)
pbar = tqdm(val_dataloader)
for idx, (images, targets) in enumerate(pbar):
images = images.to(device)
with torch.no_grad():
outputs = model(images).cpu()
acc = emnist_evaluator.update(outputs, targets)
info = f"Batch:{idx} ACC:{acc * 100:.3f}"
pbar.set_description(info)
acc = emnist_evaluator.result()
print(f"ACC:{acc * 100:.3f}")
def main():
args = parse_opt()
val(args, args.val_root, args.pretrained)
if __name__ == '__main__':
main()