-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
246 lines (202 loc) · 7.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import csv
import math
import os
import random
import funcy
from multiprocessing import Pool
import matplotlib.pyplot as plt
import numpy as np
from keras import utils
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten
from keras.layers import Dense
from keras.losses import categorical_crossentropy
from keras.models import Sequential
from keras.optimizers import Adadelta
from tqdm import tqdm
from generator import generate_set_of_tasks
from loader import load_data, convert_to_numpy_array
from simple_solver import solve
def solve_data_helper(args):
return solve_data(*args)
def solve_data(data, h, bf_samples):
if not h:
all_h = range(20, 90, 20)
all_h = [h / 100 for h in all_h]
else:
all_h = [h]
scheduled_tasks = []
possible_orders = []
for i in range(bf_samples):
possible_orders.append(random.sample(range(0, len(data[0])), len(data[0])))
for datum in tqdm(data, desc="Instances"):
best_order = []
min_sum_f = 3200000
for h in all_h:
for i in range(len(possible_orders)):
sum_p = sum([p[0] for p in datum])
d = math.floor(sum_p * h)
sum_f = solve(d, datum, possible_orders[i])
if sum_f < min_sum_f:
best_order = possible_orders[i]
min_sum_f = sum_f
# save_data('data/sch10_output.txt', datum, scheduled_tasks)
scheduled_tasks.append((best_order, min_sum_f))
return scheduled_tasks
def prepare_conv2d(x_train, y_train, x_test, y_test):
num_tasks = x_train.shape[1]
batch_size = 10
epochs = 10
input_shape = (num_tasks, 3, 1)
num_classes = num_tasks
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (1, 1), activation='relu'))
model.add(MaxPooling2D(pool_size=(1, 1)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_tasks * num_classes, activation='softmax'))
model.compile(loss=categorical_crossentropy,
optimizer=Adadelta(),
metrics=['accuracy'])
flatten_categorized_y_train = get_flat_categorized_y(y_train, num_classes)
flatten_categorized_y_test = get_flat_categorized_y(y_test, num_classes)
history = model.fit(x_train, flatten_categorized_y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, flatten_categorized_y_test))
visualize_training(history)
# score = model.evaluate(x_test, flatten_categorized_y_train, verbose=0)
# print('Test loss:', score[0])
# print('Test accuracy:', score[1])
classification = model.predict(x_test, batch_size=batch_size)
classification = [c.reshape(num_tasks, num_classes) for c in classification]
return classification, model
def visualize_training(history):
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Test'], loc='upper left')
plt.show()
def get_flat_categorized_y(y_data, num_classes):
train_order = [order[0] for order in y_data]
train_order = np.asarray(train_order)
categorized_y_train = utils.to_categorical(train_order, num_classes=num_classes)
flatten_categorized_y_train = np.asarray([y.flatten() for y in categorized_y_train])
return flatten_categorized_y_train
def translate_classification(classification):
orders = []
for c in classification:
order = []
for task in c:
value_index = np.argmax(task)
order.append(value_index)
orders.append(order)
return orders
def chunk_seq(seq, num):
avg = len(seq) / float(num)
out = []
last = 0.0
while last < len(seq):
out.append(seq[int(last):int(last + avg)])
last += avg
return out
def run(h, n, generate_tasks, generated_tasks_bf, input_tasks_bf, batch_size, concurrency=1):
generated_data = generate_set_of_tasks(generate_tasks, n, 1, 20, 1, 10, 1, 15)
generated_data = convert_to_numpy_array(generated_data)
order_generated_bf = solve_data_concurrent(concurrency, generated_data, generated_tasks_bf, h)
classification, model = prepare_conv2d(generated_data,
order_generated_bf,
generated_data,
order_generated_bf)
data = load_data('data/sch' + str(n) + '.txt')
data = convert_to_numpy_array(data)
order_input_bf = solve_data_concurrent(concurrency, data, input_tasks_bf, h)
for i in range(len(order_input_bf)):
print(str(i) + '\t' + str(order_input_bf[i][1]))
classification = model.predict(data, batch_size=batch_size)
classification = [c.reshape(n, n) for c in classification]
orders = translate_classification(classification)
order_score = []
for i in range(10):
sum_p = sum([p[0] for p in data[i]])
d = math.floor(sum_p * h)
order_score.append(solve(d, data[i], orders[i]))
for i in range(len(order_score)):
print(str(i) + '\t' + str(order_score[i]))
return order_input_bf, orders, order_score
def solve_data_concurrent(concurrency, data, tasks_bf, h):
con_generated_data = chunk_seq(data, concurrency)
args = [(datum, h, tasks_bf) for datum in con_generated_data]
pool = Pool(processes=concurrency)
results = pool.map(solve_data_helper, args)
pool.close()
pool.join()
order = funcy.join(results)
return order
if __name__ == '__main__':
f = open('./output10_0-8.csv', 'w')
writer = csv.writer(f)
results = run(h=0.8,
n=10,
generate_tasks=100000,
generated_tasks_bf=5000,
input_tasks_bf=1000000,
batch_size=10,
concurrency=7)
writer.writerows(results[0])
writer.writerows(results[1])
writer.writerow(results[2])
f.close()
f = open('./output50_0.6.csv', 'w')
writer = csv.writer(f)
results = run(h=0.6,
n=50,
generate_tasks=100000,
generated_tasks_bf=1000,
input_tasks_bf=100000,
batch_size=10,
concurrency=7)
writer.writerows(results[0])
writer.writerows(results[1])
writer.writerow(results[2])
f.close()
f = open('./output200_0.4.csv', 'w')
writer = csv.writer(f)
results = run(h=0.4,
n=200,
generate_tasks=10000,
generated_tasks_bf=1000,
input_tasks_bf=100000,
batch_size=10,
concurrency=7)
writer.writerows(results[0])
writer.writerows(results[1])
writer.writerow(results[2])
f.close()
f = open('./output1000_0.2.csv', 'w')
writer = csv.writer(f)
results = run(h=0.2,
n=1000,
generate_tasks=1000,
generated_tasks_bf=1000,
input_tasks_bf=100000,
batch_size=10,
concurrency=7)
writer.writerows(results[0])
writer.writerows(results[1])
writer.writerow(results[2])
f.close()