-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathrun.py
188 lines (143 loc) · 5.64 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import time
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torchvision.transforms as transforms
from dataset import *
from VIN import *
# Automatic swith of GPU mode if available
use_GPU = torch.cuda.is_available()
# Parsing training parameters
parser = argparse.ArgumentParser()
parser.add_argument('--datafile',
type=str,
default='./data/gridworld_8x8.npz',
help='Path to data file')
parser.add_argument('--imsize',
type=int,
default=8,
help='Size of image')
parser.add_argument('--lr',
type=float,
default=0.002,
help='Learning rate, [0.01, 0.005, 0.002, 0.001]')
parser.add_argument('--epochs',
type=int,
default=30,
help='Number of epochs to train')
parser.add_argument('--k',
type=int,
default=10,
help='Number of Value Iterations')
parser.add_argument('--ch_i',
type=int,
default=2,
help='Number of channels in input layer')
parser.add_argument('--ch_h',
type=int,
default=150,
help='Number of channels in first hidden layer')
parser.add_argument('--ch_q',
type=int,
default=10,
help='Number of channels in q layer (~actions) in VI-module')
parser.add_argument('--batch_size',
type=int,
default=128,
help='Batch size') # TODO: Divisibility to DataLoader
args = parser.parse_args()
# Instantiate a VIN model
net = VIN(args)
if use_GPU:
net = net.cuda()
# Loss
criterion = nn.CrossEntropyLoss()
# Optimizer
optimizer = optim.RMSprop(net.parameters(), lr=args.lr, eps=1e-6)
# Dataset transformer: torchvision.transforms
transform = None #
# Define Dataset
trainset = GridworldData(args.datafile, imsize=args.imsize, train=True, transform=transform)
testset = GridworldData(args.datafile, imsize=args.imsize, train=False, transform=transform)
# Create Dataloader
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, num_workers=0)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=0)
for epoch in range(args.epochs): # Loop over dataset multiple times
running_losses = []
start_time = time.time()
for i, data in enumerate(trainloader): # Loop over batches of data
# Get input batch
X, S1, S2, labels = data
if X.size()[0] != args.batch_size: # TODO: Bug with DataLoader
continue # Drop those data, if not enough for a batch
# Send Tensors to GPU if available
if use_GPU:
X = X.cuda()
S1 = S1.cuda()
S2 = S2.cuda()
labels = labels.cuda()
# Wrap to autograd.Variable
X, S1, S2, labels = Variable(X), Variable(S1), Variable(S2), Variable(labels)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass
outputs = net(X, S1, S2, args)
# Loss
loss = criterion(outputs, labels)
# Backward pass
loss.backward()
# Update params
optimizer.step()
# Accumulate running losses
running_losses.append(loss.data[0]) # Take out value from 1D Tensor
time_duration = time.time() - start_time
# Print epoch logs
print('[Epoch # {:3d} ({:.1f} s)] Loss: {:.4f}'.format(epoch + 1, time_duration, np.mean(running_losses)))
print('\nFinished training. \n')
# Testing...
correct = 0
total = 0
for i, data in enumerate(testloader):
# Get inputs
X, S1, S2, labels = data
if X.size()[0] != args.batch_size: # TODO: Bug with DataLoader
continue # Drop those data, if not enough for a batch
# Send Tensors to GPU if available
if use_GPU:
X = X.cuda()
S1 = S1.cuda()
S2 = S2.cuda()
labels = labels.cuda()
# Wrap to autograd.Variable
X, S1, S2 = Variable(X), Variable(S1), Variable(S2)
# Forward pass
outputs = net(X, S1, S2, args)
# Select actions with max scores(logits)
_, predicted = torch.max(outputs, dim=1)
# Unwrap autograd.Variable to Tensor
predicted = predicted.data
# Compute test accuracy
correct += (predicted == labels).sum()
total += labels.size()[0] # args.batch_size*num_batches, TODO: Check if DataLoader drop rest examples less than batch_size
print('Test Accuracy (with {:d} examples): {:.2f}%'.format(total, 100*(correct/total)))
print('\nFinished testing.\n')
# Compute reward image and its value images for test sample
# Randomly sample an index in test set
idx = np.random.randint(0, len(testset))
# Convert them to Tensor
X = torch.from_numpy(np.array([testset.images[idx]]))
S1 = torch.from_numpy(np.array([testset.S1[idx]]))
S2 = torch.from_numpy(np.array([testset.S2[idx]]))
# Wrap to autograd.Variable
X = Variable(X.cuda())
S1 = Variable(S1.cuda())
S2 = Variable(S2.cuda())
# Forward pass
net(X, S1, S2, args, record_images=True)
# Save grid image, reward image and value images
imgs = np.concatenate([net.grid_image] + [net.reward_image] + net.value_images)
np.savez_compressed('learned_rewards_values_{:d}x{:d}'.format(args.imsize, args.imsize), imgs)
print('\nRecorded reward and value images.\n')