-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathvectorize_validation.py
130 lines (85 loc) · 2.91 KB
/
vectorize_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
vectorize categorical variables
optionally train an SVM and a random forest, get validation AUC
importing from another script:
from vectorize_validation import y_train, x_train, y_test, x_test
"""
import numpy as np
import pandas as pd
import sqlite3
from math import sqrt
from sklearn.feature_extraction import DictVectorizer as DV
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier as RF
from sklearn.metrics import roc_auc_score as AUC
###
data_dir = '/path/to/your/data/dir/' # needs trailing slash
# validation split, both files with headers and the Happy column
train_file = data_dir + 'train_v.csv'
test_file = data_dir + 'test_v.csv'
###
train = pd.read_csv( train_file )
test = pd.read_csv( test_file )
# set missing YOB to zero
train.YOB[ train.YOB.isnull() ] = 0
train.YOB[train.YOB < 1920] = 0
train.YOB[train.YOB > 2004] = 0
test.YOB[ test.YOB.isnull() ] = 0
test.YOB[test.YOB < 1920] = 0
test.YOB[test.YOB > 2004] = 0
# numeric x
numeric_cols = [ 'YOB', 'votes' ]
x_num_train = train[ numeric_cols ].as_matrix()
x_num_test = test[ numeric_cols ].as_matrix()
# scale to <0,1>
max_train = np.amax( x_num_train, 0 )
max_test = np.amax( x_num_test, 0 ) # not really needed
x_num_train = x_num_train / max_train
x_num_test = x_num_test / max_train # scale test by max_train
# y
y_train = train.Happy
y_test = test.Happy
# categorical
cat_train = train.drop( numeric_cols + [ 'UserID', 'Happy'], axis = 1 )
cat_test = test.drop( numeric_cols + [ 'UserID', 'Happy'], axis = 1 )
cat_train.fillna( 'NA', inplace = True )
cat_test.fillna( 'NA', inplace = True )
x_cat_train = cat_train.to_dict( orient = 'records' )
x_cat_test = cat_test.to_dict( orient = 'records' )
# vectorize
vectorizer = DV( sparse = False )
vec_x_cat_train = vectorizer.fit_transform( x_cat_train )
vec_x_cat_test = vectorizer.transform( x_cat_test )
# complete x
x_train = np.hstack(( x_num_train, vec_x_cat_train ))
x_test = np.hstack(( x_num_test, vec_x_cat_test ))
if __name__ == "__main__":
# SVM looks much better in validation
print "training SVM..."
# although one needs to choose these hyperparams
C = 173
gamma = 1.31e-5
shrinking = True
probability = True
verbose = True
svc = SVC( C = C, gamma = gamma, shrinking = shrinking, probability = probability, verbose = verbose )
svc.fit( x_train, y_train )
p = svc.predict_proba( x_test )
auc = AUC( y_test, p[:,1] )
print "SVM AUC", auc
print "training random forest..."
n_trees = 100
max_features = int( round( sqrt( x_train.shape[1] ) * 2 )) # try more features at each split
max_features = 'auto'
verbose = 1
n_jobs = 1
rf = RF( n_estimators = n_trees, max_features = max_features, verbose = verbose, n_jobs = n_jobs )
rf.fit( x_train, y_train )
p = rf.predict_proba( x_test )
auc = AUC( y_test, p[:,1] )
print "RF AUC", auc
# AUC 0.701579086548
# AUC 0.676126704696
# max_features * 2
# AUC 0.710060065732
# AUC 0.706282346719