-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHGT.py
729 lines (577 loc) · 26.7 KB
/
HGT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# -*- coding: utf-8 -*-
"""GRU_sequence+attention.ipynb
# Classifying OUV using GRU sequence model + Attention
## Imports
"""
import sys
sys.executable
import os
import os
import os.path as osp
from itertools import product
from typing import Callable, List, Optional
import numpy as np
import scipy.sparse as sp
from torch_geometric.data import (
HeteroData,
Data,
InMemoryDataset,
download_url,
extract_zip,
)
from argparse import Namespace
from collections import Counter
import json
import re
import string
import pandas as pd
import random
import torch
from torch.nn import DataParallel
from torch_geometric.transforms import RandomLinkSplit, ToUndirected
import torch_geometric.transforms as T
from torch_geometric.nn import GATConv, Linear, to_hetero
from torch_geometric.utils import to_undirected
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm
import torch.optim as optim
import pickle
from torch_geometric.nn import HGTConv, Linear
from torch_geometric.loader import NeighborLoader
print("PyTorch version {}".format(torch.__version__))
print("GPU-enabled installation? {}".format(torch.cuda.is_available()))
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
print(device)
args = Namespace(
# Data and Path information
path = 'dataset/Venice',
save_dir='model_storage/HGT/',
model_state_file='model.pth',
# Model hyper parameters
hidden_channels = 128,
num_layers = 3,
num_heads = 2,
group = 'sum',
k=3,
# Training hyper parameters
sample_nodes = 25,
batch_size=32,
early_stopping_criteria=100,
learning_rate=0.001,
l2=2e-4,
dropout_p=0.5,
num_epochs=300,
seed=42,
# Runtime options
catch_keyboard_interrupt=True,
cuda=True,
expand_filepaths_to_save_dir=True,
reload_from_files=False,
)
class VEN_links(InMemoryDataset):
r"""A subset of Flickr post collected in Venice annotated with Heritage
Values and Attributes, as collected in the `"Heri-Graphs: A Workflow of
Creating Datasets for Multi-modal Machine Learning on Graphs of Heritage
Values and Attributes with Social Media" <https://arxiv.org/abs/2205.07545>`
paper.
VEN is a heterogeneous graph containing two types of nodes - nodes with only
visual features 'vis_only' (1,190 nodes), nodes with both visual and textual
features 'vis_tex' (1,761 nodes) and four types of links - social similarity
'SOC' (488,103 links), spatial similarity (445,779 links), temporal similarity
(501,191 links), and simple composed link (1,071,977 links).
Vis_only nodes are represented with 982-dimensional visual features and are
divided into 9 heritage attribute categories
('architectural elements', 'form', 'gastronomy', 'interior',
'landscape scenery and natural features', 'monuments', 'people', 'product',
'urban scenery').
Vis_text nodes are represented with 1753-dimensional visual and textual
features and are divided into 9 heritage attribute categories plus 11
heritage value categories ('criterion i-x', 'other').
Both types of nodes are also merged into a single type of node 'all' with
1753-dimensional features and 20-dimensional label categories.
Args:
root (string): Root directory where the dataset should be saved.
transform (callable, optional): A function/transform that takes in an
:obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
every access. (default: :obj:`None`)
pre_transform (callable, optional): A function/transform that takes in
an :obj:`torch_geometric.data.HeteroData` object and returns a
transformed version. The data object will be transformed before
being saved to disk. (default: :obj:`None`)
Stats:
* - #nodes
- #edges
- #features
- #classes
* - 2,951
- 1,071,977
- 1753
- 20
"""
url = 'https://drive.google.com/uc?export=download&id=1sxcKiZr1YGDv06wr03nsk5HVZledgzi9'
def __init__(self, root: str, transform: Optional[Callable] = None,
pre_transform: Optional[Callable] = None):
super().__init__(root, transform, pre_transform)
self.data, self.slices = torch.load(self.processed_paths[0])
@property
def raw_file_names(self) -> List[str]:
return [
'A_simp.npz', 'A_SOC.npz', 'A_SPA.npz', 'A_TEM.npz', 'labels.npz',
'node_types.npy', 'Textual_Features.npy', 'train_val_test_idx.npz',
'Visual_Features.npy'
]
@property
def processed_file_names(self) -> str:
return 'data.pt'
def download(self):
path = download_url(self.url, self.raw_dir)
extract_zip(path, self.raw_dir)
os.remove(path)
def process(self):
data = HeteroData()
node_types = ['all']
link_types = ['SOC', 'SPA', 'TEM', 'simp']
vis = np.load(osp.join(self.raw_dir, 'Visual_Features.npy'),allow_pickle=True)[:,2:].astype(float)
tex = np.load(osp.join(self.raw_dir, 'Textual_Features.npy'),allow_pickle=True)[:,5:].astype(float)
x = np.hstack([vis,np.nan_to_num(tex)])
node_type_idx = np.load(osp.join(self.raw_dir, 'node_types.npy'))
node_type_idx = torch.from_numpy(node_type_idx).to(torch.long)
#data['vis_only'].num_nodes = int((node_type_idx == 0).sum())
#data['vis_tex'].num_nodes = int((node_type_idx == 1).sum())
data['all'].num_nodes = len(node_type_idx)
#data['vis_only'].x = torch.from_numpy(vis[node_type_idx==0]).to(torch.float)
#data['vis_tex'].x = torch.from_numpy(x[node_type_idx==1]).to(torch.float)
data['all'].x = torch.from_numpy(x).to(torch.float)
y_s = np.load(osp.join(self.raw_dir, 'labels.npz'), allow_pickle=True)
att_lab = y_s['ATT_LAB'][:,1:10].astype(float)
val_lab = np.nan_to_num(y_s['VAL_LAB'][:,2:13].astype(float))
ys = np.hstack([att_lab, val_lab])
#data['vis_only'].y = torch.from_numpy(att_lab[node_type_idx==0]).to(torch.float)
#data['vis_tex'].y = torch.from_numpy(ys[node_type_idx==1]).to(torch.float)
data['all'].y = torch.from_numpy(ys).to(torch.float)
data.node_type = node_type_idx
split = np.load(osp.join(self.raw_dir, 'train_val_test_idx.npz'))
for name in ['train', 'val', 'test']:
idx = split[f'{name}_idx']
idx = torch.from_numpy(idx).to(torch.long)
mask = torch.zeros(data['all'].num_nodes, dtype=torch.bool)
mask[idx] = True
data['all'][f'{name}_mask'] = mask
#data['vis_only'][f'{name}_mask'] = mask[node_type_idx==0]
#data['vis_tex'][f'{name}_mask'] = mask[node_type_idx==1]
s = {}
#s['vis_only'] = np.arange(len(x))[node_type_idx==0]
#s['vis_tex'] = np.arange(len(x))[node_type_idx==1]
for link in link_types:
A_sub = sp.load_npz(osp.join(self.raw_dir, f'A_{link}.npz')).tocoo()
if A_sub.nnz>0:
row = torch.from_numpy(A_sub.row).to(torch.long)
col = torch.from_numpy(A_sub.col).to(torch.long)
data['all', f'{link}_link', 'all'].edge_index = torch.stack([row, col], dim=0)
data['all', f'{link}_link', 'all'].edge_attr = torch.from_numpy(A_sub.data).to(torch.long)
if self.pre_transform is not None:
data = self.pre_transform(data)
torch.save(self.collate([data]), self.processed_paths[0])
def __repr__(self) -> str:
return f'{self.__class__.__name__}()'
"""## The Model: HGT Model"""
class HGT_L(torch.nn.Module):
def __init__(self, metadata, hidden_channels, out_channels, num_heads, num_layers, group='sum'):
super().__init__()
self.lin_dict = torch.nn.ModuleDict()
self.lin_dict['all'] = Linear(-1, hidden_channels)
self.convs = torch.nn.ModuleList()
metadata = (metadata[0], metadata[-1][:-1])
for _ in range(num_layers):
conv = HGTConv(hidden_channels, hidden_channels, metadata,
num_heads, group=group)
self.convs.append(conv)
self.lin1 = Linear(-1, hidden_channels)
self.lin2 = Linear(2*hidden_channels, out_channels)
def forward(self, x_dict, edge_index_dict):
x_0 = self.lin1(x_dict['all']).relu()
x_dict = {
node_type: self.lin_dict[node_type](x).relu_()
for node_type, x in x_dict.items() if node_type=='all'
}
edge_index_dict = {key: edge_index_dict[key] for key in edge_index_dict if 'all' in key and not 'simp_link' in key}
for conv in self.convs:
x_dict = conv(x_dict, edge_index_dict)
x = self.lin2(torch.hstack([x_0,x_dict['all']]))
return x
"""## Training Routine"""
@torch.no_grad()
def init_params(model, train_loader):
# Initialize lazy parameters via forwarding a single batch to the model:
batch = next(iter(train_loader))
batch = batch.to(device)
batch = batch.to(device, 'edge_index')
out = model(batch.x_dict, batch.edge_index_dict)
def train(model, optimizer, train_loader):
model.train()
total_examples = total_loss = 0
for batch in tqdm(train_loader):
optimizer.zero_grad()
batch = batch.to(device)
batch_size = args.batch_size
new_dict = {}
for edge_type in [edge_type for edge_type in batch.edge_index_dict if 'all' in edge_type and not 'simp_link' in edge_type]:
edge_index = batch.edge_index_dict[edge_type]
edge_index = to_undirected(edge_index)
new_dict[edge_type] = edge_index
batch.edge_index_dict = new_dict
out = model(batch.x_dict, batch.edge_index_dict)[:batch_size]
out_att = out[:,:9]
out_val = out[:,9:]
y = batch.y_dict['all']
y_att = y[:,:9]
y_val = y[:,9:]
loss = F.cross_entropy(out_att, y_att[:batch_size]) + F.cross_entropy(out_val, y_val[:batch_size])
loss.backward()
optimizer.step()
total_examples += batch_size
total_loss += float(loss) * batch_size
return total_loss / total_examples
@torch.no_grad()
def test(model, loader):
model.eval()
total_examples = 0
running_loss_1 = running_loss_2 = 0.
running_1_acc = 0.
running_k_acc = 0.
running_k_jac = 0.
running_1_val = 0.
for batch in tqdm(loader):
batch = batch.to(device)
batch_size = batch['all'].batch_size
new_dict = {}
for edge_type in [edge_type for edge_type in batch.edge_index_dict if 'all' in edge_type and not 'simp_link' in edge_type]:
edge_index = batch.edge_index_dict[edge_type]
edge_index = to_undirected(edge_index)
new_dict[edge_type] = edge_index
batch.edge_index_dict = new_dict
out = model(batch.x_dict, batch.edge_index_dict)[:batch_size]
out_att = out[:,:9]
out_val = out[:,9:]
type_node = batch.node_type[:batch_size].nonzero().squeeze()
y = batch.y_dict['all']
y_att = y[:,:9]
y_val = y[:,9:]
loss_1 = F.cross_entropy(out_att, y_att[:batch_size])
loss_2 = F.cross_entropy(out_val[type_node], y_val[type_node])
#loss_3 = loss_1 + loss_2
acc_1_t = compute_1_accuracy(y_att[:batch_size], out_att)
acc_1_val = compute_1_accuracy(y_val[type_node], out_val[type_node])
acc_k_t = compute_k_accuracy(y_val[type_node], out_val[type_node], args.k)
jac_k_t = compute_jaccard_index(y_val[type_node], F.softmax(out_val[type_node],dim=-1), args.k)
total_examples += batch_size
#total_correct_att += int((pred_att == y_att[:batch_size]).sum())
#total_correct_val += int((pred_val == y_val[:batch_size]).sum())
running_loss_1 += float(loss_1) * batch_size
running_loss_2 += float(loss_2) * batch_size
running_1_acc += float(acc_1_t) * batch_size
running_1_val += float(acc_1_val) * batch_size
running_k_acc += float(acc_k_t) * batch_size
running_k_jac += float(jac_k_t) * batch_size
return running_loss_1/total_examples, running_loss_2/total_examples, running_1_acc/ total_examples, running_k_acc/ total_examples, running_k_jac/ total_examples, running_1_val/total_examples
"""### Helper Functions
"""
def make_train_state(args):
return {'stop_early': False,
'early_stopping_step': 0,
'early_stopping_best_ATT_acc_val': 0,
'early_stopping_best_VAL_acc_val': 0,
'early_stopping_best_ATT_acc_val_2': 0,
'early_stopping_lowest_loss': 1000,
'learning_rate': args.learning_rate,
'epoch_index': 0,
'train_loss': [],
'train_ATT_loss': [],
'train_VAL_loss':[],
'train_ATT_acc': [],
'train_VAL_acc': [],
'train_VAL_jac': [],
'train_VAL_acc_1':[],
'val_loss': [],
'val_ATT_loss': [],
'val_VAL_loss':[],
'val_ATT_acc': [],
'val_VAL_acc': [],
'val_VAL_jac': [],
'val_VAL_acc_1': [],
'test_loss': -1,
'test_ATT_loss': -1,
'test_VAL_loss':-1,
'test_ATT_acc': -1,
'test_VAL_acc': -1,
'test_VAL_jac': -1,
'test_VAL_acc_1': -1,
'model_filename': args.model_state_file}
def update_train_state(args, model, train_state):
"""Handle the training state updates.
Components:
- Early Stopping: Prevent overfitting.
- Model Checkpoint: Model is saved if the model is better
:param args: main arguments
:param model: model to train
:param train_state: a dictionary representing the training state values
:returns:
a new train_state
"""
# Save one model at least
if train_state['epoch_index'] == 0:
torch.save(model.state_dict(), train_state['model_filename'])
train_state['stop_early'] = False
# Save model if performance improved
elif train_state['epoch_index'] >= 1:
ATT_acc_tm1, ATT_acc_t = train_state['val_ATT_acc'][-2:]
#ATT_acc_2_tm1, ATT_acc_2_t = train_state['val_ATT_acc_2'][-2:]
VAL_acc_tm1, VAL_acc_t = train_state['val_VAL_acc'][-2:]
loss_tm1, loss_t = train_state['val_loss'][-2:]
# If accuracy worsened
#if loss_t >= train_state['early_stopping_lowest_loss']:
# train_state['early_stopping_step'] += 1
if ATT_acc_t <= train_state['early_stopping_best_ATT_acc_val'] and VAL_acc_t <= train_state['early_stopping_best_VAL_acc_val']:# and ATT_acc_2_t <= train_state['early_stopping_best_ATT_acc_val_2']:
# Update step
train_state['early_stopping_step'] += 1
# Loss decreased
else:
# Save the best model from sklearn
if VAL_acc_t > train_state['early_stopping_best_VAL_acc_val']:
train_state['early_stopping_best_VAL_acc_val'] = VAL_acc_t
if ATT_acc_t > train_state['early_stopping_best_ATT_acc_val']:
train_state['early_stopping_best_ATT_acc_val'] = ATT_acc_t
#if ATT_acc_2_t > train_state['early_stopping_best_ATT_acc_val_2']:
# train_state['early_stopping_best_ATT_acc_val_2'] = ATT_acc_2_t
if loss_t < train_state['early_stopping_lowest_loss']:
train_state['early_stopping_lowest_loss'] = loss_t
torch.save(model.state_dict(), train_state['model_filename'])
# Reset early stopping step
train_state['early_stopping_step'] = 0
# Stop early ?
train_state['stop_early'] = \
train_state['early_stopping_step'] >= args.early_stopping_criteria
return train_state
"""### Evaluation Metrics"""
def compute_cross_entropy(y_pred, y_target):
y_target = y_target.cpu().float()
y_pred = y_pred.cpu().float()
criterion = nn.BCEWithLogitsLoss()
return criterion(y_target, y_pred)
def compute_1_accuracy(y_pred, y_target):
y_target_indices = y_target.max(dim=1)[1]
y_pred_indices = y_pred.max(dim=1)[1]
n_correct = torch.eq(y_pred_indices, y_target_indices).sum().item()
return n_correct / len(y_pred_indices) * 100
def compute_k_accuracy(y_pred, y_target, k=3):
y_pred_indices = y_pred.topk(k, dim=1)[1]
y_target_indices = y_target.max(dim=1)[1]
n_correct = torch.tensor([y_pred_indices[i] in y_target_indices[i] for i in range(len(y_pred))]).sum().item()
return n_correct / len(y_pred_indices) * 100
def compute_k_jaccard_index(y_pred, y_target, k=3):
y_target_indices = y_target.topk(k, dim=1)[1]
y_pred_indices = y_pred.max(dim=1)[1]
jaccard = torch.tensor([len(np.intersect1d(y_target_indices[i], y_pred_indices[i]))/
len(np.union1d(y_target_indices[i], y_pred_indices[i]))
for i in range(len(y_pred))]).sum().item()
return jaccard / len(y_pred_indices)
def compute_jaccard_index(y_pred, y_target, k=3, multilabel=False):
threshold = 1.0/(k+1)
threshold_2 = 0.5
if multilabel:
y_pred_indices = y_pred.gt(threshold_2)
else:
y_pred_indices = y_pred.gt(threshold)
y_target_indices = y_target.gt(threshold)
jaccard = ((y_target_indices*y_pred_indices).sum(axis=1)/((y_target_indices+y_pred_indices).sum(axis=1)+1e-8)).sum().item()
return jaccard / len(y_pred_indices)
# convert a df to tensor to be used in pytorch
def df_to_tensor(df):
device = args.device
return torch.from_numpy(df.values).float().to(device)
def cross_entropy(pred, soft_targets):
logsoftmax = nn.LogSoftmax(dim=1)
return torch.mean(torch.sum(- soft_targets * logsoftmax(pred), 1))
"""### General Utilities"""
def set_seed_everywhere(seed, cuda):
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(seed)
if cuda:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.cuda.manual_seed_all(seed)
def handle_dirs(dirpath):
if not os.path.exists(dirpath):
os.makedirs(dirpath)
def initialization():
set_seed_everywhere(args.seed, args.cuda)
#transform = T.Compose([T.ToSparseTensor()])
dataset = VEN_links('dataset/Venice_links')
data = dataset[0].to(device)
train_loader = NeighborLoader(
data,
# Sample 30 neighbors for each node and edge type for 2 iterations
num_neighbors={key: [args.sample_nodes] * 2 for key in data.edge_types if 'all' in key and not 'simp_link' in key},
# Use a batch size of 128 for sampling training nodes of type paper
batch_size=args.batch_size,
input_nodes=('all', data['all'].train_mask),
)
val_loader = NeighborLoader(
data,
# Sample 30 neighbors for each node and edge type for 2 iterations
num_neighbors={key: [args.sample_nodes] * 2 for key in data.edge_types if 'all' in key and not 'simp_link' in key},
# Use a batch size of 128 for sampling training nodes of type paper
batch_size=args.batch_size,
input_nodes=('all', data['all'].val_mask),
)
test_loader = NeighborLoader(
data,
# Sample 30 neighbors for each node and edge type for 2 iterations
num_neighbors={key: [args.sample_nodes] * 2 for key in data.edge_types if 'all' in key and not 'simp_link' in key},
# Use a batch size of 128 for sampling training nodes of type paper
batch_size=args.batch_size,
input_nodes=('all', data['all'].test_mask),
)
model = HGT_L(data.metadata(), hidden_channels=args.hidden_channels, out_channels=data.y_dict['all'].shape[-1],
num_layers=args.num_layers, num_heads = args.num_heads, group=args.group).to(device)
return data, model, train_loader, val_loader, test_loader
def training_loop(verbose=False):
_, model, train_loader, val_loader, test_loader = initialization()
if torch.cuda.device_count() > 1:
print("Use {} GPUs !".format(torch.cuda.device_count()))
model = DataParallel(model)
init_params(model, train_loader)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.l2)
#scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
# mode='min', factor=0.5,
# patience=1)
train_state = make_train_state(args)
try:
for epoch in range(args.num_epochs):
train_state['epoch_index'] = epoch
loss = train(model, optimizer, train_loader)
train_loss_att, train_loss_val, train_att_acc, train_val_acc, train_val_jac, train_val_1 = test(model, train_loader)
val_loss_att, val_loss_val, val_att_acc, val_val_acc, val_val_jac, val_val_1 = test(model, val_loader)
if verbose:
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Train_ATT: {train_att_acc:.4f}, Train_VAL: {train_val_acc:.4f}, Val_vis_tex_ATT: {val_att_acc:.4f}, Val_vis_tex_VAL: {val_val_acc:.4f}')
train_state['train_loss'].append(loss)
train_state['train_ATT_loss'].append(train_loss_att)
train_state['train_VAL_loss'].append(train_loss_val)
train_state['train_ATT_acc'].append(train_att_acc)
train_state['train_VAL_acc'].append(train_val_acc)
train_state['train_VAL_jac'].append(train_val_jac)
train_state['train_VAL_acc_1'].append(train_val_1)
train_state['val_ATT_loss'].append(val_loss_att)
train_state['val_VAL_loss'].append(val_loss_val)
train_state['val_loss'].append(val_loss_att + 3*val_loss_val)
train_state['val_ATT_acc'].append(val_att_acc)
train_state['val_VAL_acc'].append(val_val_acc)
train_state['val_VAL_jac'].append(val_val_jac)
train_state['val_VAL_acc_1'].append(val_val_1)
train_state = update_train_state(args=args, model=model,
train_state=train_state)
if train_state['stop_early']:
break
except KeyboardInterrupt:
print("Exiting loop")
pass
return train_state
def update_best_config(current_best,train_state, key):
loss = train_state['early_stopping_lowest_loss']
val_VAL_acc = train_state['early_stopping_best_VAL_acc_val']
val_ATT_acc = train_state['early_stopping_best_ATT_acc_val']
if loss < current_best['loss']:
current_best['loss'] = loss
current_best['ATT'] = val_ATT_acc
current_best['VAL'] = val_VAL_acc
current_best['args'] = str(args)
current_best['key'] = key
def Hypersearch(hyperdict, current_best, verbose):
'''
Perform a hyperparameter search using grid search and save into the hyperdict
'''
s_num_heads = [2, 4, 8]
s_num_layers = [2, 3, 5]
s_group = ['sum', 'mean']
s_hidden_channels = [32, 64, 128, 256]
#s_l2 = [0, 1e-5, 2e-4]
#s_batch_size = [32]
s_lr = [0.01, 0.001, 0.0005, 0.0001]
search_bar = tqdm(desc='hyper_searching',
total=len(s_num_heads)*len(s_num_layers)*len(s_group)*len(s_hidden_channels)*len(s_lr))
i=0
for hd in s_num_heads:
for lay in s_num_layers:
for gp in s_group:
for hc in s_hidden_channels:
for lr in s_lr:
args.num_heads = hd
args.num_layers = lay
args.group = gp
args.hidden_channels = hc
args.learning_rate = lr
key = (hd, lay, gp, hc, lr)
if not key in hyperdict:
train_state = training_loop(verbose=verbose)
hyperdict[key] = train_state
update_best_config(current_best,train_state, key)
search_bar.set_postfix(best_ATT_acc = current_best['ATT'],
best_VAL_acc = current_best['VAL'],
config = current_best['key'])
search_bar.update()
#if i%5==0:
# best_df = pd.DataFrame(current_best)
# best_df.to_csv(args.save_dir+'best_config.csv')
with open(args.save_dir+'hyperdict.p', 'wb') as fp:
pickle.dump(hyperdict,fp, protocol=pickle.HIGHEST_PROTOCOL)
i+=1
#best_df = pd.DataFrame(current_best)
#best_df.to_csv(args.save_dir+'best_config.csv')
def main():
if args.expand_filepaths_to_save_dir:
args.model_state_file = os.path.join(args.save_dir,
args.model_state_file)
print("Expanded filepaths: ")
print("\t{}".format(args.model_state_file))
# Check CUDA
if not torch.cuda.is_available():
args.cuda = False
else:
torch.backends.cudnn.benchmark = True
print('Using cudnn.benchmark.')
print("Using CUDA: {}".format(args.cuda))
args.device = torch.device("cuda" if args.cuda else "cpu")
#s_seed = [0,1,2,42,100,233,1024,1337,2333,4399]
s_seed = [42]
for sd in s_seed:
args.seed = sd
args.save_dir = args.save_dir + '{}/'.format(sd)
# handle dirs
handle_dirs(args.save_dir)
if 'hyperdict.p' in [files for root, dirs, files in os.walk(args.save_dir)][0]:
with open(args.save_dir+'hyperdict.p', 'rb') as fp:
hyperdict = pickle.load(fp)
else:
hyperdict = {}
# Train Model with Hyperparameter Search
current_best = {}
current_best['loss'] = 1e10
current_best['ATT'] = 0
current_best['VAL'] = 0
current_best['args'] = None
#current_best['state'] = None
current_best['key'] = None
Hypersearch(hyperdict, current_best,verbose=True)
with open(args.save_dir+'hyperdict.p', 'wb') as fp:
pickle.dump(hyperdict,fp, protocol=pickle.HIGHEST_PROTOCOL)
#dp, l2, bs, lr = current_best['key']
#args.dropout_p = dp
#args.l2 = l2
#args.batch_size = bs
#args.learning_rate = lr
if __name__ == "__main__":
main()
"""## END"""