Skip to content
forked from Skiyaga/snippy

✂️ ⚡ Rapid bacterial SNP calling and core genome alignments

License

Notifications You must be signed in to change notification settings

AkurutEva/snippy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status License: GPL v2

Snippy

Rapid haploid variant calling and core SNP phylogeny

Author

Torsten Seemann (@torstenseemann)

Synopsis

Snippy finds SNPs between a haploid reference genome and your NGS sequence reads. It will find both substitutions (snps) and insertions/deletions (indels). It will use as many CPUs as you can give it on a single computer (tested to 64 cores). It is designed with speed in mind, and produces a consistent set of output files in a single folder. It can then take a set of Snippy results using the same reference and generate a core SNP alignment (and ultimately a phylogenomic tree).

Quick Start

% snippy --cpus 16 --outdir mysnps --ref Listeria.gbk --R1 FDA_R1.fastq.gz --R2 FDA_R2.fastq.gz
<cut>
Walltime used: 3 min, 42 sec
Results folder: mysnps
Done.

% ls mysnps
snps.vcf snps.bed snps.gff snps.csv snps.tab snps.html 
snps.bam snps.txt reference/ ...

% head -5 mysnps/snps.tab
CHROM  POS     TYPE    REF   ALT    EVIDENCE        FTYPE STRAND NT_POS AA_POS LOCUS_TAG GENE PRODUCT EFFECT
chr      5958  snp     A     G      G:44 A:0        CDS   +      41/600 13/200 ECO_0001  dnaA replication protein DnaA missense_variant c.548A>C p.Lys183Thr
chr     35524  snp     G     T      T:73 G:1 C:1    tRNA  -   
chr     45722  ins     ATT   ATTT   ATTT:43 ATT:1   CDS   -                    ECO_0045  gyrA DNA gyrase
chr    100541  del     CAAA  CAA    CAA:38 CAAA:1   CDS   +                    ECO_0179      hypothetical protein
plas      619  complex GATC  AATA   GATC:28 AATA:0  
plas     3221  mnp     GA    CT     CT:39 CT:0      CDS   +                    ECO_p012  rep  hypothetical protein

% snippy-core --prefix core mysnps1 mysnps2 mysnps3 mysnps4 
Loaded 4 SNP tables.
Found 2814 core SNPs from 96615 SNPs.

% ls core.*
core.aln core.tab core.txt

Installation

Homebrew

Install HomeBrew (Mac OS X) or LinuxBrew (Linux).

brew tap homebrew/science
brew tap tseemann/homebrew-bioinformatics-linux
brew install snippy
snippy --help

Source

This will install the latest version direct from Github. You'll need to add the bin directory to your PATH.

cd $HOME
git clone https://github.com/tseemann/snippy.git
$HOME/snippy/bin/snippy --help

Calling SNPs

Input Requirements

  • a reference genome in FASTA or GENBANK format (can be in multiple contigs)
  • sequence read files in FASTQ or FASTA format (can be .gz compressed) format
  • a folder to put the results in

Output Files

Extension Description
.tab A simple tab-separated summary of all the variants
.csv A comma-separated version of the .tab file
.html A HTML version of the .tab file
.vcf The final annotated variants in VCF format
.vcf.gz Compressed .vcf file via BGZIP
.vcf.gz.tbi Index for the .vcf.gz via TABIX
.bed The variants in BED format
.gff The variants in GFF3 format
.bam The alignments in BAM format. Note that multi-mapping and unmapped reads are not present.
.bam.bai Index for the .bam file
.raw.vcf The unfiltered variant calls from Freebayes
.filt.vcf The filtered variant calls from Freebayes
.log A log file with the commands run and their outputs
.consensus.fa A version of the reference genome with all variants instantiated
.aligned.fa A version of the reference but with - at position with depth=0 and N for 0 < depth < --mincov (does not have variants)
.depth.gz Output of samtools depth for the .bam file
.depth.gz.tbi Index for the .depth.gz (currently unused)

Columns in the TAB/CSV/HTML formats

Name Description
CHROM The sequence the variant was found in eg. the name after the > in the FASTA reference
POS Position in the sequence, counting from 1
TYPE The variant type: snp msp ins del complex
REF The nucleotide(s) in the reference
ALT The alternate nucleotide(s) supported by the reads
EVIDENCE Frequency counts for REF and ALT

If you supply a Genbank file as the --reference rather than a FASTA file, Snippy will fill in these extra columns by using the genome annotation to tell you which feature was affected by the variant:

Name Description
FTYPE Class of feature affected: CDS tRNA rRNA ...
STRAND Strand the feature was on: + - .
NT_POS Nucleotide position of the variant withinthe feature / Length in nt
AA_POS Residue position / Length in aa (only if FTYPE is CDS)
LOCUS_TAG The /locus_tag of the feature (if it existed)
GENE The /gene tag of the feature (if it existed)
PRODUCT The /product tag of the feature (if it existed)
EFFECT The snpEff annotated consequence of this variant

Variant Types

Type Name Example
snp Single Nucleotide Polymorphism A => T
mnp Multiple Nuclotide Polymorphism GC => AT
ins Insertion ATT => AGTT
del Deletion ACGG => ACG
complex Combination of snp/mnp ATTC => GTTA

The variant caller

The variant calling is done by Freebayes. However, Snippy uses a very simple model for reporting variants, relying on two main options:

  • --mincov is the minimum number of reads covering the variant position.
  • --minfrac is the minimum proportion of those reads which must differ from the reference.

By default Snippy uses --mincov 10 --minfrac 0.9 which is reasonable for most cases, but for very high coverage data you may get mixed populations such as (REF:310 ALT:28). Snippy may use a more statistical approach in future versions like Nesoni does.

Core SNP phylogeny

If you call SNPs for multiple isolates from the same reference, you can produce an alignment of "core SNPs" which can be used to build a high-resolution phylogeny (ignoring possible recombination). A "core site" is a genomic position that is present in all the samples. A core site can have the same nucleotide in every sample ("monomorphic") or some samples can be different ("polymorphic" or "variant"). If we ignore the complications of "ins", "del" variant types, and just use variant sites, these are the "core SNP genome".

Input Requirements

  • a set of Snippy folders which used the same --ref sequence.

Output Files

Extension Description
.aln A core SNP alignment in the --aformat format (default FASTA)
.full.aln A whole genome SNP alignment (includes invariant sites)
.tab Tab-separated columnar list of core SNP sites with alleles and annotations
.txt Tab-separated columnar list of alignment/core-size statistics

Advanced usage

Finding SNPs between contigs

Sometimes one of your samples is only available as contigs, without corresponding FASTQ reads. You can still use these contigs with Snippy to find variants against a reference. It does this by shredding the contigs into 250 bp single-end reads at 2 &times; --mincov uniform coverage.

To use this feature, instead of providing --R1 and --R2 you use the --ctgs option with the contigs file:

% ls
ref.gbk mutant.fasta

% snippy --outdir mut1 --ref ref.gbk --ctgs mut1.fasta
Shredding mut1.fasta into pseudo-reads.
Identified 257 variants.

% snippy --outdir mut2 --ref ref.gbk --ctgs mut2.fasta
Shredding mut2.fasta into pseudo-reads.
Identified 413 variants.

% snippy-core mut1 mut2 
Found 129 core SNPs from 541 variant sites.

% ls
core.aln core.full.aln ...

This output folder is completely compatible with snippy-core so you can mix FASTQ and contig based snippy output folders to produce alignments.

Correcting assembly errors

The de novo assembly process attempts to reconstruct the reads into the original DNA sequences they were derived from. These reconstructed sequences are called contigs or scaffolds. For various reasons, small errors can be introduced into the assembled contigs which are not supported by the original reads used in the assembly process.

A common strategy is to align the reads back to the contigs to check for discrepancies. These errors appear as variants (SNPs and indels). If we can reverse these variants than we can "correct" the contigs to match the evidence provided by the original reads. Obviously this strategy can go wrong if one is not careful about how the read alignment is performed and which variants are accepted.

Snippy is able to help with this contig correction process. In fact, it produces a snps.consensus.fa FASTA file which is the ref.fa input file provided but with the discovered variants in snps.vcf applied!

However, Snippy is not perfect and sometimes finds questionable variants. Typically you would make a copy of snps.vcf (let's call it corrections.vcf) and remove those lines corresponding to variants we don't trust. For example, when correcting Roche 454 and PacBio SMRT contigs, we primarily expect to find A/T homopolymer errors and hence expect to see ins more than snp type variants.

In this case you need to run the correcting process manually using these steps:

% cd snippy-outdir
% cp snps.vcf corrections.vcf
% $EDITOR corrections.vcf
% bgzip -c corrections.vcf > corrections.vcf.gz
% tabix -p vcf corrections.vcf.gz
% vcf-consensus corrections.vcf.gz < ref.fa > corrected.fa

You may wish to iterate this process by using corrected.fa as a new --ref for a repeated run of Snippy. Sometimes correcting one error allows BWA to align things it couldn't before, and new errors are uncovered.

Snippy may not be the best way to correct assemblies - you should consider dedicated tools such as PILON or iCorn2, or adjust the Quiver parameters (for Pacbio data).

Unmapped Reads

Sometimes you are interested in the reads which did not align to the reference genome. These reads represent DNA that was novel to your sample which is potentially interesting. A standard strategy is to de novo assemble the unmapped reads to discover these novel DNA elements, which often comprise mobile genetic elements such as plasmids.

By default, Snippy does not keep the unmapped reads, not even in the BAM file. If you wish to keep them, use the --unmapped option and the unaligned reads will be saved to a compressed FASTQ file:

% snippy --outdir out --unmapped ....

% ls out/
snps.unmapped.fastq.gz ....

Information

Etymology

The name Snippy is a combination of SNP (pronounced "snip") , snappy (meaning "quick") and Skippy the Bush Kangaroo (to represent its Australian origin)

License

Snippy is free software, released under the GPL (version 3).

Issues

Please submit suggestions and bug reports here: https://github.com/tseemann/snippy/issues

Requirements

  • Perl >= 5.6
  • Perl Modules: Time::Piece, File::Slurp, Bioperl >= 1.6
  • bwa mem >= 0.7.12
  • samtools >= 1.3
  • GNU parallel > 2013xxxx
  • freebayes >= 1.1
  • freebayes sripts (freebayes-parallel, fasta_generate_regions.py)
  • vcflib (vcfstreamsort, vcfuniq, vcffirstheader)
  • vcftools (vcf-consensus)
  • snpEff >= 4.3

Bundled binaries

For Linux (compiled on Centos 7) and Mac OS X (compiled on Sierra Brew) all the binaries, JARs and scripts are included.

About

✂️ ⚡ Rapid bacterial SNP calling and core genome alignments

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Perl 98.9%
  • Other 1.1%