Skip to content

Commit

Permalink
Merge pull request #1389 from karthikyandrapu/dev
Browse files Browse the repository at this point in the history
Added Partition Sort
  • Loading branch information
pankaj-bind authored Oct 29, 2024
2 parents 6d95fab + ced4ed9 commit b03b89f
Show file tree
Hide file tree
Showing 2 changed files with 145 additions and 0 deletions.
84 changes: 84 additions & 0 deletions Sorting Algorithms/Partition Sort/Program.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
#include <stdio.h>
#include <stdlib.h>

// Function to swap two elements in the array
void swap(int *a, int *b)
{
int tmp = *a;
*a = *b;
*b = tmp;
}

// Partition function implementing Hoare's partitioning scheme
// It rearranges the elements around a pivot and returns the index where partitioning ends
int partition(int arr[], int low, int high)
{
int pivot = arr[low]; // Selecting the first element as the pivot
int i = low - 1, j = high + 1;

while (1)
{
// Move `i` right until an element >= pivot is found
do
{
i++;
} while (arr[i] < pivot);

// Move `j` left until an element <= pivot is found
do
{
j--;
} while (arr[j] > pivot);

// If pointers cross, partitioning is complete
if (i >= j)
return j;

// Swap elements at `i` and `j` to move them to correct sides of the pivot
swap(&arr[i], &arr[j]);
}
}

// Recursive function to apply partition sort to subarrays
void partitionSort(int arr[], int low, int high)
{
if (low < high)
{
// Partition the array and get the partition index
int value = partition(arr, low, high);

// Recursively sort elements before and after partition
partitionSort(arr, low, value);
partitionSort(arr, value + 1, high);
}
}

// Function to print the elements of the array
void printArray(int arr[], int n)
{
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
printf("\n");
}

int main()
{
int arr[20]; // Array to hold random numbers
int range = 100; // Range of random numbers to generate

// Fill the array with random numbers from 1 to 100
for (int i = 0; i < 20; i++)
{
arr[i] = rand() % range + 1;
}

int size = sizeof(arr) / sizeof(arr[0]); // Calculate the size of the array
printf("Array: \n");
printArray(arr, size); // Print the unsorted array

partitionSort(arr, 0, size - 1); // Sort the array using partition sort
printf("Sorted Array: \n");
printArray(arr, size); // Print the sorted array

return 0;
}
61 changes: 61 additions & 0 deletions Sorting Algorithms/Partition Sort/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,61 @@
# Partition Sort Algorithm

This document provides an overview of the Partition Sort algorithm, an implementation that uses the Hoare Partition scheme. This is a variant of the QuickSort algorithm that partitions the array around a pivot and recursively sorts the partitions.

## Code Description

The algorithm uses the following functions:

- `swap(int *a, int *b)`: Swaps two elements in an array.
- `partition(int arr[], int low, int high)`: Partitions the array based on the Hoare Partition scheme. It selects the first element as a pivot, then rearranges elements such that all elements smaller than the pivot are on the left, and all elements greater are on the right.
- `partitionSort(int arr[], int low, int high)`: Recursively sorts the array by partitioning it until each element is individually sorted.
- `printArray(int arr[], int n)`: Prints the contents of an array.

## Example Usage

The following example demonstrates the use of the algorithm with an array of random integers:

```c
#include <stdio.h>
#include <stdlib.h>

// Function implementations ...

int main()
{
int arr[20];
int range = 100;
for (int i = 0; i < 20; i++)
{
arr[i] = rand() % range + 1;
}

printf("Unsorted Array: \n");
printArray(arr, 20);

partitionSort(arr, 0, 19);

printf("Sorted Array: \n");
printArray(arr, 20);

return 0;
}
```

## Steps in the Algorithm

1. **Generate Random Array**: Create an array of random integers.
2. **Partitioning**: Select a pivot element and partition the array, moving elements less than the pivot to the left and greater ones to the right.
3. **Recursive Sort**: Recursively apply the `partitionSort` function to each partitioned segment until the entire array is sorted.
4. **Print the Sorted Array**: Use `printArray` to output the sorted array.

## Time Complexity

- **Best Case**: \(O(n \log n)\) - When the pivot divides the array into two equal halves.
- **Average Case**: \(O(n \log n)\) - Expected with random pivots.
- **Worst Case**: \(O(n^2)\) - Occurs when the pivot is always the smallest or largest element, leading to unbalanced partitions (for example, when the array is already sorted).

## Space Complexity

- **Space Complexity**: \(O(\log n)\) - This comes from the recursion stack used by the recursive calls of the `partitionSort` function.

0 comments on commit b03b89f

Please sign in to comment.