-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add test for ztp setting with seasonality
- Loading branch information
Showing
2 changed files
with
123 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
from pymc3_hmm.distributions import HMMStateSeq, SwitchingProcess, poisson_subset_args | ||
from pymc3.distributions.dist_math import bound, logpow, factln | ||
from pymc3.distributions import draw_values, generate_samples | ||
from tests.utils import ( | ||
simulate_poiszero_hmm, | ||
check_metrics_for_sampling, | ||
) | ||
from pymc3_hmm.step_methods import FFBSStep, TransMatConjugateStep | ||
import pymc3 as pm | ||
import theano.tensor as tt | ||
import numpy as np | ||
import pandas as pd | ||
import patsy | ||
import scipy.stats | ||
|
||
|
||
class ZeroTruncatedPoisson(pm.Poisson): | ||
# adapted from https://gist.github.com/ririw/2e3a4415dc8271bd2d132c476b98b567 | ||
def __init__(self, mu, *args, **kwargs): | ||
super().__init__(mu, *args, **kwargs) | ||
self.sub_args = poisson_subset_args | ||
|
||
def ztf_cdf(self, mu, size=None): | ||
mu = np.asarray(mu) | ||
dist = scipy.stats.poisson(mu) | ||
|
||
nrm = 1 - dist.cdf(0) | ||
sample = np.random.rand(size[0]) * nrm + dist.cdf(0) | ||
|
||
return dist.ppf(sample) | ||
|
||
def random(self, point=None, size=None): | ||
mu = draw_values([self.mu], point=point)[0] | ||
return generate_samples(self.ztf_cdf, mu, dist_shape=self.shape, size=size) | ||
|
||
def logp(self, value): | ||
mu = self.mu | ||
# mu^k | ||
# PDF = ------------ | ||
# k! (e^mu - 1) | ||
# log(PDF) = log(mu^k) - (log(k!) + log(e^mu - 1)) | ||
# | ||
# See https://en.wikipedia.org/wiki/Zero-truncated_Poisson_distribution | ||
p = logpow(mu, value) - (factln(value) + pm.math.log(pm.math.exp(mu) - 1)) | ||
log_prob = bound(p, mu >= 0, value >= 0) | ||
# Return zero when mu and value are both zero | ||
return tt.switch(1 * tt.eq(mu, 0) * tt.eq(value, 0), 0, log_prob) | ||
|
||
|
||
# %% | ||
def gen_design_matrix(N): | ||
t = pd.date_range(end=pd.to_datetime("today"), periods=N, freq="H").to_frame() | ||
t["weekday"] = t[0].dt.dayofweek | ||
t["hour"] = t[0].dt.hour | ||
t.reset_index() | ||
formula_str = " 1 + C(hour) + C(weekday)" | ||
X_df = patsy.dmatrix(formula_str, t, return_type="dataframe") | ||
return X_df.values | ||
|
||
|
||
def test_seasonality_ztp_sampling(N: int = 200, off_param=1): | ||
np.random.seed(2032) | ||
|
||
X_t = gen_design_matrix(N) | ||
betas_intercept = np.random.normal(np.log(3000), 1, size=1) | ||
betas_hour = np.sort(np.random.normal(0.5, 0.1, size=23)) | ||
betas_week = np.sort(np.random.normal(1, 0.1, size=6)) | ||
|
||
betas = tt.concatenate([betas_intercept, betas_hour, betas_week]) | ||
eta_r = tt.exp(tt.dot(X_t, betas)) | ||
|
||
cls = ZeroTruncatedPoisson | ||
|
||
kwargs = { | ||
"N": N, | ||
"mus": np.r_[eta_r], | ||
"pi_0_a": np.r_[1, 1], | ||
"Gamma": np.r_["0,2,1", [10, 1], [5, 5]], | ||
"cls": cls, | ||
} | ||
simulation, _ = simulate_poiszero_hmm(**kwargs) | ||
|
||
with pm.Model() as test_model: | ||
p_0_rv = pm.Dirichlet("p_0", np.r_[1, 1]) | ||
p_1_rv = pm.Dirichlet("p_1", np.r_[1, 1]) | ||
|
||
P_tt = tt.stack([p_0_rv, p_1_rv]) | ||
P_rv = pm.Deterministic("P_tt", P_tt) | ||
|
||
pi_0_tt = simulation["pi_0"] | ||
y_test = simulation["Y_t"] | ||
|
||
S_rv = HMMStateSeq("S_t", y_test.shape[0], P_rv, pi_0_tt) | ||
S_rv.tag.test_value = (y_test > 0).astype(np.int) | ||
|
||
X = gen_design_matrix(N) | ||
beta_s_intercept = pm.Normal("beta_s_intercept", np.log(3000), 1, shape=(1,)) | ||
beta_s_hour = pm.Normal("beta_s_hour", 0.5, 0.1, shape=(23,)) | ||
beta_s_week = pm.Normal("beta_s_week", 1, 0.1, shape=(6,)) | ||
|
||
beta_s = pm.Deterministic( | ||
"beta_s", tt.concatenate([beta_s_intercept, beta_s_hour, beta_s_week]) | ||
) | ||
mu = tt.exp(tt.dot(X, beta_s)) | ||
|
||
Y_rv = SwitchingProcess( | ||
"Y_t", [pm.Constant.dist(0), cls.dist(mu)], S_rv, observed=y_test, | ||
) | ||
with test_model: | ||
mu_step = pm.NUTS([mu, beta_s]) | ||
ffbs = FFBSStep([S_rv]) | ||
transitions = TransMatConjugateStep([p_0_rv, p_1_rv], S_rv) | ||
steps = [ffbs, mu_step, transitions] | ||
trace_ = pm.sample(N, step=steps, return_inferencedata=True, chains=1) | ||
posterior = pm.sample_posterior_predictive(trace_.posterior) | ||
|
||
check_metrics_for_sampling(trace_, posterior, simulation) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters