A repository allowing to perform the various SST1M
DigiCam commissionning tasks.
It is build on the ctapipe
pipeline
In the base folder one can find the high level scripts which allow for example to evaluate the gain from low light data or which allow to evaluate LED calibration, etc... as well as a set of modules holding the low level functionnalities
The module data_treatement
contains algorithms
to various type of histograms out of the data.
The module spectra_fit
contains high level fits
definitions.
The module utils
contains low level functionnalities
such as histogram class, peak finder, plotting helpers,
etc...
This script produces ADC distribution out of zfits
files
in DIRECTORY+file_basename+FILE_LIST[:]
taken with HV off and then fits them with a simple gaussian.
Histograms are saved in output_directory+histo_filename
and fit results in output_directory+fit_filename
Usage: ./analyse_hvoff.py [options]
Options:
-h, --help show this help message and exit
-q, --quiet don't print status messages to stdout
-c, --create_histo create the histogram
-p, --perform_fit perform fit of ADC with HV OFF
-f FILE_LIST, --file_list=FILE_LIST
input filenames separated by ','
--evt_max=EVT_MAX maximal number of events
-n N_EVT_PER_BATCH, --n_evt_per_batch=N_EVT_PER_BATCH
number of events per batch
--cts_sector=CTS_SECTOR
Sector covered by CTS
--file_basename=FILE_BASENAME
file base name
-d DIRECTORY, --directory=DIRECTORY
input directory
--histo_filename=HISTO_FILENAME
Histogram ADC HV OFF file name
--output_directory=OUTPUT_DIRECTORY
directory of histo file
--fit_filename=FIT_FILENAME
name of fit file with ADC HV OFF
Example of usage:
Run the full script specifying all options:
./analyse_hvoff.py -c -p -d /my/data/dir --file_namebase thefilename_ -f 0,1,2 --output_directory /my/output/dir --histo_filename ouput_histo_file.npz --fit_filename ouput_fit_file.npz
Run the fit only on saved histograms:
./analyse_hvoff.py -p /my/output/dir --histo_filename ouput_histo_file.npz --fit_filename ouput_fit_file.npz
Only display the results:
./analyse_hvoff.py /my/output/dir --histo_filename ouput_histo_file.npz --fit_filename ouput_fit_file.npz
Usage: analyse_dark.py [options]
Options:
-h, --help show this help message and exit
-q, --quiet don't print status messages to stdout
-c, --create_histo load the ADC with HV ON histograms from file
-p, --perform_fit perform fit of ADC from dark run
-f FILE_LIST, --file_list=FILE_LIST
input filenames separated by ','
--evt_max=EVT_MAX maximal number of events
-n N_EVT_PER_BATCH, --n_evt_per_batch=N_EVT_PER_BATCH
number of events per batch
--file_basename=FILE_BASENAME
file base name
-d DIRECTORY, --directory=DIRECTORY
input directory
--histo_filename=HISTO_FILENAME
Histogram SPE file name
--output_directory=OUTPUT_DIRECTORY
directory of histo file
--fit_filename=FIT_FILENAME (NOT IMPLEMENTED)
name of fit file with dark
This script produces ADC distribution out of zfits
files
in DIRECTORY+file_basename+FILE_LIST[:]
taken with HV on but dark conditions.
Histograms are saved in output_directory+histo_filename
and fit results in output_directory+fit_filename
WARNING: No fit is implemented for the moment. This is where we should develop the fit using convolution of pdfs for the sliding signal in 4ns.
This script produces ADC distribution out of zfits
files
in DIRECTORY+file_basename+FILE_LIST[:]
taken with HV on but dark conditions.
Histograms are saved in output_directory+histo_filename
and fit results in output_directory+fit_filename
Fit takes as input the result of the analyse_hvoff.py
script.
Usage: analyse_gain_sigmas.py [options]
Options:
-h, --help show this help message and exit
-q, --quiet don't print status messages to stdout
-c, --create_histo load the mpe histo from file
-t, --create_time_histo
load the mpe histo from file
-k, --create_full_histo
load the mpe full histo from file
-p, --perform_fit_gain
perform fit of all mpe to get gain, sigma_e, sigma1
-f FILE_LIST, --file_list=FILE_LIST
input filenames separated by ','
-l SCAN_LEVEL, --scan_level=SCAN_LEVEL
list of scans DC level, separated by ',', if only
three argument, min,max,step
-e EVENTS_PER_LEVEL, --events_per_level=EVENTS_PER_LEVEL
number of events per level
--evt_max=EVT_MAX maximal number of events
-n N_EVT_PER_BATCH, --n_evt_per_batch=N_EVT_PER_BATCH
number of events per batch
--file_basename=FILE_BASENAME
file base name
-d DIRECTORY, --directory=DIRECTORY
input directory
--histo_filename=HISTO_FILENAME
Histogram SPE file name
--peak_histo_filename=PEAK_HISTO_FILENAME
name of peak histo file
--output_directory=OUTPUT_DIRECTORY
directory of histo file
--fit_filename=FIT_FILENAME
name of fit file with MPE
--input_fit_hvoff_filename=INPUT_HVOFF_FILENAME
Input fit file name
--input_fit_dark_filename=INPUT_DARK_FILENAME
Input fit file name
Usage: analyse_ac_dac_scan.py [options]
Options:
-h, --help show this help message and exit
-q, --quiet don't print status messages to stdout
-p, --perform_fit_mu perform fit of mpe
-l SCAN_LEVEL, --scan_level=SCAN_LEVEL
list of scans DC level, separated by ',', if only
three argument, min,max,step
-n N_EVT_PER_BATCH, --n_evt_per_batch=N_EVT_PER_BATCH
number of events per batch
--file_basename=FILE_BASENAME
file base name
-d DIRECTORY, --directory=DIRECTORY
input directory
--histo_filename=HISTO_FILENAME
Histogram SPE file name
--output_directory=OUTPUT_DIRECTORY
directory of histo file
--fit_filename=FIT_FILENAME
name of fit file with MPE