Production-ready integrations with major AI services and APIs. Demonstrating efficient orchestration and implementation of various AI services in real-world applications.
Features β’ Installation β’ Quick Start β’ Documentation β’ Contributing
- Features
- Project Structure
- Prerequisites
- Installation
- Quick Start
- Documentation
- Contributing
- Versioning
- Authors
- Citation
- License
- Acknowledgments
- Multi-service AI orchestration
- Intelligent fallback strategies
- Rate limiting and caching
- Cost optimization techniques
- Production monitoring tools
graph TD
A[ai-apis-integration] --> B[services]
A --> C[orchestration]
A --> D[optimization]
A --> E[monitoring]
B --> F[openai]
B --> G[anthropic]
B --> H[google]
C --> I[routing]
C --> J[fallback]
D --> K[caching]
D --> L[cost]
E --> M[metrics]
E --> N[alerts]
Click to expand full directory structure
ai-apis-integration/
βββ services/ # Service integrations
β βββ openai/ # OpenAI integration
β βββ anthropic/ # Anthropic integration
β βββ google/ # Google AI integration
βββ orchestration/ # Service orchestration
β βββ routing/ # Request routing
β βββ fallback/ # Fallback strategies
βββ optimization/ # Optimization tools
βββ monitoring/ # Monitoring systems
βββ tests/ # Unit tests
βββ README.md # Documentation
- Python 3.8+
- Valid API keys for services
- Redis (for caching)
- Docker (optional)
# Clone repository
git clone https://github.com/BjornMelin/ai-apis-integration.git
cd ai-apis-integration
# Create environment
python -m venv venv
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
# Set up environment variables
cp .env.example .env
# Edit .env with your API keys
from ai_integration import services, optimization
# Initialize service orchestrator
orchestrator = services.AIOrchestrator(
providers=["openai", "anthropic"],
cache_enabled=True
)
# Configure cost optimization
cost_manager = optimization.CostManager(
budget_limit=100,
optimization_level="aggressive"
)
# Make API request with automatic optimization
response = orchestrator.process_request(
prompt="Generate a business analysis",
cost_manager=cost_manager,
fallback_enabled=True
)
Service | Features | Latency | Cost/1K Tokens |
---|---|---|---|
OpenAI | GPT-4, Embeddings | 500ms | $0.03 |
Anthropic | Claude, Analysis | 600ms | $0.02 |
PaLM, Vision | 450ms | $0.01 |
- Intelligent request routing
- Response caching
- Rate limit management
- Error handling
Strategy | Savings | Impact |
---|---|---|
Smart Routing | 30% | Minimal |
Caching | 45% | None |
Batch Processing | 25% | +100ms Latency |
We use SemVer for versioning. For available versions, see the tags on this repository.
Bjorn Melin
- GitHub: @BjornMelin
- LinkedIn: Bjorn Melin
@misc{melin2024aiapisintegration,
author = {Melin, Bjorn},
title = {AI APIs Integration: Production-Ready AI Service Orchestration},
year = {2024},
publisher = {GitHub},
url = {https://github.com/BjornMelin/ai-apis-integration}
}
This project is licensed under the MIT License - see the LICENSE file for details.
- OpenAI team
- Anthropic developers
- LangChain community
- FastAPI developers
Made with π and β€οΈ by Bjorn Melin