Skip to content

Modules for processing extracellular electrophysiology data from Neuropixels probes

License

Notifications You must be signed in to change notification settings

CSC-UW/ecephys_spike_sorting

 
 

Repository files navigation

CSC-UW changes to vanilla ecephys_spike_sorting

We should aim to one day use the official repo!

Detailed comparison: https://github.com/CSC-UW/ecephys_spike_sorting/compare/master...wisc/dev

Summary, updated 5/11/2022:

  • Allow importing ecephys_spike_sorting.scripts.create_input_json.createInputJson from another package
    • Commits: 1
    • createInputJson was originally meant to be used as a script. This could be a PR
  • Set paths to existing folders in CreateInputJson
    • Commits: 1
    • Most of those paths are not used at all in our pipeline (I think all but npy_matlab_repository and ecephys_directory), but it is checked that they are set to valid values anyways.
  • Following postprocessing, make it such that Phy highlight clusters based on cluster_group (unsorted/noise) rather than KSLabel (good/mua)
  • Allow computing isi-based metrics with for multiple values of the isi threshold at once
    • Commits: 1
    • This could be a PR, not sure how other labs to
  • Expose tbin_sec parameter in createInputJson (used when computing contam_rate metric)
    • Commits: 1
    • For isi_threshold < 2msec, the default value for the size of bins in contam_rate (1msec) doesn't make sense
  • Pin argscheme and marshmallow versions so that not all parameters need to be set.
    • Reverted commits: 1 2
    • Final commit (minimal diff to upstream) 1

Changes merged in vanilla ecephys_spike_sorting

Reverted changes

  • Fix C_waves subprocess call
    • Commits: 1
    • Reversion: 1
  • Catch scikit ValueError in d_primes quality metric
    • Commits: 1
    • Reversion 1
    • Not sure yet whether that was necessary (TODO). If so, should make a PR.
  • Verbose in noise_templates
    • Commits 1 2
    • Reversion 1
  • Verbose in create_input_json
  • Various sanity checks that I added because I was not confident in whether Jennifer's code was doing the right thing
    • Commits 1
    • Reversion 1
  • Allow computing metrics after curation in phy
    • Commits 1
    • Reversion 1
    • This was implemented by Jennifer

ecephys spike sorting -- for SpikeGLX data

ecephys_spike_sorting_icon

Modules for processing extracellular electrophysiology data from Neuropixels probes, originally developed at the Allen Institute for Brain Science. This fork has been modified to run with SpikeGLX data, including integration of CatGT (preprocessing), C_Waves(calculation of SNR and mean waveforms) and TPrime (synchronization across data streams).

Code including modifications for SpikeGLX https://github.com/jenniferColonell/ecephys_spike_sorting

Original repo from the Allen Institue https://github.com/AllenInstitute/ecephys_spike_sorting

python versions

Overview

The general outline of the pipeline is preprocessing, spike sorting by Kilosort 3.0, Kilosort 2.5 or Kilosort 2.0 , followed by cleanup and calculation of QC metrics. The original version from the Allen used preprocessing specifically for data saved using the Open Ephys GUI. This version is designed to run with data collected using SpikeGLX, and its associated tools (CatGT, TPrime, and C_Waves). The identification of noise clusters is unchanged from the original code. Calculation of QC metrics has been updated to work with any Neuropixels probe type, rather than assuming NP 1.0 site geomtery; also, the metrics code can now be run on phy output after manual curation.

The spikeGLX_pipeline.py script implements this pipeline:

ece_pipeline_cartoon

This code is still under development, and we welcome feedback about any step in the pipeline.

Modules in SpikeGLX Pipeline

Further documentation can be found in each module's README file. For more information on Kilosort2, please read through the GitHub wiki.

  1. catGT_helper: Concatenates trials, applies filters, removes artifacts in neural data. Finds edges in sync and auxiliary channels.

  2. kilosort_helper: Generates config files for Kilosort based on SpikeGLX metadata and launches spike sorting via the Matlab engine.

  3. kilosort_postprocessing: Removes putative double-counted spikes from Kilosort output. The algorithm has been changed from the original to delete all between cluster duplicates from the cluster with lower amplitude.

  4. psth_events: Reformat list of events from an auxiliary channel for phy psth plots.

  5. noise_templates: Identifies noise units based on their waveform shape and ISI histogram or a random forest classifier.

  6. mean_waveforms: Extracts mean waveforms from the raw data, given spike times and unit IDs. Also calculates metrics for each waveform. In this version the mean waveforms are calculated using Bill Karsh's efficient C_Waves tool.

  7. quality_metrics: Calculates quality metrics for each unit to assess isolation and sorting quality.

  8. tPrime_helper: Maps event times (edges in auxiliary channels, spike times) in all streams to match a reference stream.

  9. depth_estimation: Uses the LFP data to identify the surface channel. Updated to use site geometry from SGLX metedata. Currently does not feed this result to kilosort. Can be run in any part of the processing after CatGT, if LFP processing has been performed.

Modules Specific to Open Ephys

  1. extract_from_npx: Calls a binary executable that converts data from compressed NPX format into .dat files (continuous data) and .npy files (event data)

  2. median_subtraction: Calls a binary executable that removes the DC offset and common-mode noise from the AP band continuous file. CatGT CAR replaces this function for SpikeGLX data.

(Not used) automerging: Automatically merges templates that belong to the same unit (included in case it's helpful to others).

Installation and Usage for the SpikeGLX pipeline

These modules have been tested with Python 3.8.10.

We recommend using pipenv to run these modules.

All of the components of the SpikeGLX pipeline are available in Windows and Linux, but the pipeline has only been tested in Windows. These instructions are for Windows 10.

Install pipenv

If the computer doesn't already have python, install it; the current version of the pipeline environmet requires at least 3.8. The currently tested version is 3.8.10. Download the Windows x86-64 executable installer and run the exe, selecting the "Add Python to PATH" checkbox at the bottom of the dialog.

If you forget to check the the "Add to PATH" box, it can be added afterward by editing the Environment Variables (under Advanced system settings). The two paths to add are to the Python folder containing the exe, and the scripts folder, e.g.:

C:\Users\labadmin\AppData\Local\Programs\Python\Python38 C:\Users\labadmin\AppData\Local\Programs\Python\Python38\Scripts

If you have another version of Python installed, this version can be installed side by side. To use these installation instructions, version 3.8 will need to have priority in the environment PATH variable.

Open the Windows command prompt as administrator, and install pipenv:

    $ pip install --user pipenv

The pipenv executable will be in:

C:\Users\labadmin\AppData\Roaming\Python\Python38\Scripts

Add this path to the PATH environment variable. If you have paths to other versions in PATH, this one will need to be first in the search list for pipenv to use the correct version.

Close the command prompt, and reopen as a user (not as administrator) for the next steps.

Install ecephys environment and code

Clone (or download and unzip) the repo. (https://github.com/jenniferColonell/ecephys_spike_sorting)

In the command window navigate to the ecephys_spike_sorting directory at the top level of the repo, e.g.:

cd \Users\labadmin\Documents\ecephys_clone\ecephys_spike_sorting

Build the environment -- it will use the Pipfile located in this directory, and create the virtual environment in the local directory. Currently (January 2022) the latest version of setuptools appears to not function with installation of MATLAB, so after the install, we activate the environment and use pip to uninstall setuptools and install 59.8.0. Finally, install the ecephys code in the environment.

    $ set PIPENV_VENV_IN_PROJECT=1
    $ pipenv install
    $ pipenv shell
    (.venv) $ pip uninstall setuptools
    (.venv) $ pip install setuptools==59.8.0
    (.venv) $ pip install .

Set up to run MATLAB from Python

The python version and MATLAB version need to be compatible. For Python 3.8, this requires MATLAB 2020b or later. The code has been tested only with MATLAB 2021b.

Install MATLAB 2021b – side by side installations of MATLAB are fine, so there is no need to delete earlier versions, and running code specific to an earlier version should be possible.

Open MATLAB 2021b, and enter the command gpuDevice(). You make get a message that there are no GPU devices with compatible drivers. Later versions of MATLAB also require more recent drivers for the GPU card – MATLAB 2021b requires version 10.1 or later of the Nvidia drivers.

If you get that message, quit MATLAB. Update the drivers for the GPU card -- this can be done with the Device Manager in Windows 10, and will also happen automatically if you update the CUDA Toolkit. The pipeline has been tested with CUDA Toolkit 11, which is compatible with GPUs back to the NVIDIA Maxwell architecture. After updating, restart MATLAB and enter gpuDevice() again to make sure it is recognized.

The MATLAB engine for python must be installed in the local instance of python run by the virtual environment. Open the command prompt as administrator, navigate to the ecephys directory, and enter:

$ pipenv shell
(.venv) $ cd <matlabroot>\extern\engines\python
(.venv) $ python setup.py install

Replace with the root directory of your MATLAB 2021b installation, for example:

C:\Program Files\MATLAB\R2021b

For more details about installing the python engine, see the MATAB documentation:

https://www.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html

NOTE: This install needs to be repeated whenenver the virtual environment is rebuilt (e.g. after creating a new clone or download of the repo).

After completing the install, close the command window and reopen as a normal user (not administrator) to run scripts.

Install CatGT, TPrime, and C_Waves

CatGT, TPrime, and C_Waves are each available on the SpikeGLX download page. To install, simply download each zipped folder and extract to a convenient location, see the instructions here. The paths to these executables must then be set in create_input_json.py.

Usage

Edit parameters for your system and runs

Parameters are set in two files. Values that are constant across runs—like paths to code, parameters for sorting, etc – are set in create_input_json.py. Parameters that need to be set per run (run names, which triggers and probes to process…) are set in script files.

In create_input_json.py, be sure to set these paths and parameters for your system:

  • ecephys_directory: parent directory that contains the modules directory
  • kilosort_repository
  • KS2ver -- needs to be set to '2.5' or '2.0', and be correct for the repository
  • npy_matlab_repository
  • catGTPath: contains the CatGT.exe file
  • cWaves_path: contains the C_Waves.exe file
  • tPrimePath: contains the TPrime.exe file
  • kilosort_output_temp (see note below)

Note: The kilosort_output_temp folder contains the kilosort residual file and also temporary copies of the config and master file. With kilosort 2.5, this "temporary" file--which has been drift corrected--may be used for manual curation in phy. If you want it to be kept available, set the parameter ks_copy_fproc=1; then a copy will be made with the kilosort output and the params.py adjusted automatically.

Other “mostly constant” parameters in create_input_json.py:

  • Most Kilosort2 parameters.
  • kilosort post processing params
  • quality metrics params

Read through the parameter list for create_input_json.py to see which parameters are already passed in and therefore settable per run from a calling pipeline script. These currently include the threshold parameter for Kilosort, switches to include postprocessing steps within Kilosort, and radii (in um) to define the extent of templates and regions for calculating quality metrics. These radii are converted to sites in create_input_json.py using the probe type read from the metadata.

Running scripts

The scripts generate a command line to run specific modules using parameters stored in a json file, which is created by the script. Create a directory to hold the json files, e.g.

\Users\labadmin\Documents\ecephys_clone\json_files

There are two example scripts for running with SpikeGLX data:

sglx_multi_run_pipeline.py Meant to process multiple SpikeGLX runs, especially with multiple probes. The threshold for kilosort and the refractory period for the quality metrics are set per probe by specifying a brain region parameter for each probe. A first pass through all the probes in a run generates json parameters files for CatGt and sorting+post processing, and a second loop actually calls the processing. Finally runs TPrime. See comments in the script file for parameter details.

sglx_filelist_pipeline.py Meant for running sorting/postprocessing modules on collections of preprocessed data, independent of the standard SpikeGLX run structure.

For either script, edit to set the destination for the json_files, and the location of the input run files. Edit the list of modules to include those you want to run. For the full pipeline script, you also need to set the CatGT and TPrime parameters.

These scripts are easy to customize to send the output to different directories.

To run scripts, navigate to the ecephys_spike_sorting\scripts directory and enter:

   (.venv)$ python <script_name.py>

Running metrics modules on manually curated data

If you manually curate your data in phy, you can recalculate mean waveforms and quality metrics for the curated clusters. You'll need to run a script that skips preprocessing and sorting, and just runs the mean_waveforms and metrics modules. The required changes in sglx_multi_run_pipeline.py are:

  • Set variable run_CatGT = False
  • Set variable runTPrime = False
  • Only include mean_waveforms and quality_metrics in the list of modules to be called, e.g.
modules = [
            #'kilosort_helper',
            #'kilosort_postprocessing',
            #'noise_templates',
            #'psth_events',
            'mean_waveforms',
            'quality_metrics'
          ]

When the mean_waveforms and metrics modules are re-run the first time, these output files are preserved with their old names:

  • metrics.csv
  • waveform_metrics.csv
  • clus_Table.npy

These output files are renamed with an added "_0":

  • mean_waveforms.npy -> mean_waveforms_0.npy
  • cluster_snr.npy -> cluster_snr_0.npy

The new output files are numbered by the latest version. Output files from the first re-run are named:

  • metrics_1.csv
  • waveform_metrics_1.csv
  • clus_Table_1.csv
  • mean_waveforms_1.npy
  • cluster_snr_1.npy

Another re-run will create a full set with _2, etc

Multiplatform installation for original pipeline

These modules require Python 3.5+, and have been tested with Python 3.5, 3.6, and 3.7.

Three of the modules (extract_from_npx, median_subtraction, and kilosort_helper) have non-Python dependencies that will need to be installed prior to use.

We recommend using pipenv to run these modules. From the ecephys_spike_sorting top-level directory, run the following commands from a terminal:

Linux

    $ pip install --user pipenv
    $ export PIPENV_VENV_IN_PROJECT=1
    $ pipenv install
    $ pipenv shell
    (ecephys_spike_sorting) $ pip install .

You can now edit one of the processing scripts found in ecephys_spike_sorting/scripts and run via:

    (ecephys_spike_sorting) $ python ecephys_spike_sorting/scripts/batch_processing.py

See the scripts README file for more information on their usage.

To leave the pipenv virtual environment, simply type:

    (ecephys_spike_sorting) $ exit

macOS

If you don't have it already, install homebrew. Then, type:

    $ brew install pipenv
    $ export PIPENV_VENV_IN_PROJECT=1
    $ pipenv install
    $ pipenv shell
    (ecephys_spike_sorting) $ pip install .

You can now edit one of the processing scripts found in ecephys_spike_sorting/scripts and run via:

    (ecephys_spike_sorting) $ python ecephys_spike_sorting/scripts/batch_processing.py

See the scripts README file for more information on their usage.

To leave the pipenv virtual environment, simply type:

    (ecephys_spike_sorting) $ exit

Windows

    $ pip install --user pipenv
    $ set PIPENV_VENV_IN_PROJECT=1
    $ pipenv install
    $ pipenv shell
    (.venv) $ pip install .

Note: This will work in the standard Command Prompt, but the cmder console emulator has better compatibility with Python virtual environments.

You can now edit one of the processing scripts found in ecephys_spike_sorting\scripts and run via:

    (.venv) $ python ecephys_spike_sorting\scripts\batch_processing.py

See the scripts README file for more information on their usage.

To leave the pipenv virtual environment, simply type:

    (.venv) $ exit

Level of Support

This code is an important part of the internal Allen Institute code base and we are actively using and maintaining it. The implementation is not yet finalized, so we welcome feedback about any aspects of the software. If you'd like to submit changes to this repository, we encourage you to create an issue beforehand, so we know what others are working on.

Terms of Use

See Allen Institute Terms of Use

© 2019 Allen Institute for Brain Science

About

Modules for processing extracellular electrophysiology data from Neuropixels probes

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 91.9%
  • MATLAB 2.8%
  • C++ 2.2%
  • Makefile 1.2%
  • C 1.2%
  • Objective-C++ 0.6%
  • Shell 0.1%