Remote-sensing Image Compression
This repository contains the code for reproducing the results with trained models (EGA-Net), NWPU-RSC Dataset, and a novel full-reference IQA FITS.
Python==3.6
torch==1.6.0
torchvision==0.7.0
ISPR Vaihingen Data: https://www2.isprs.org/
AID Dataset: https://paperswithcode.com/dataset/aid
NWPU-RSC Dataset: https://pan.baidu.com/s/1XismIJG5iO9aB9hv0VpofQ
提取码:1510
Experimental results of different methods on the AID dataset. In each example, the right-most columns represent ground truths for input image. In the other columns, the first row shows the reconstructed results by different methods, and the second row shows the magnified details of the red rectangle.
Rate-distortion curves of different compression algorithms on the ISPR Vaihingen Dataset. (a) PSNR, (b) M-SSIM, (c) VIETIM and (d) LPIPS on the ISPR dataset.
Visualization of change detection results.(a) Orginal Images, (b) BPG, (c) JPEG2000, (d) GMM, (e) C2F, (f) EGA-Net (lo), (g) EGA-Net (me) and (h) EGA-Net (hi).
If you find our project is useful for your research, please cite:
@ARTICLE{10247080,
author={Han, Pengfei and Zhao, Bin and Li, Xuelong},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Edge-Guided Remote-Sensing Image Compression},
year={2023},
volume={61},
number={},
pages={1-15},
doi={10.1109/TGRS.2023.3314012}}