-
-
Notifications
You must be signed in to change notification settings - Fork 297
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Generative Replay with weighted loss for replayed data #1596
Changes from 2 commits
e2dfaae
0855d46
9c9955b
affe662
0f42d7f
7e4fd5a
6082a3c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -15,8 +15,8 @@ | |
""" | ||
|
||
from copy import deepcopy | ||
from typing import Optional | ||
from avalanche.core import SupervisedPlugin | ||
from typing import Optional, Any | ||
from avalanche.core import SupervisedPlugin, Template | ||
import torch | ||
|
||
|
||
|
@@ -52,11 +52,14 @@ class GenerativeReplayPlugin(SupervisedPlugin): | |
""" | ||
|
||
def __init__( | ||
self, | ||
generator_strategy=None, | ||
untrained_solver: bool = True, | ||
replay_size: Optional[int] = None, | ||
increasing_replay_size: bool = False, | ||
self, | ||
generator_strategy=None, | ||
untrained_solver: bool = True, | ||
replay_size: Optional[int] = None, | ||
increasing_replay_size: bool = False, | ||
is_weighted_replay: bool = False, | ||
weight_replay_loss_factor: float = 1.0, | ||
weight_replay_loss: float = 0.0001, | ||
): | ||
""" | ||
Init. | ||
|
@@ -71,6 +74,9 @@ def __init__( | |
self.model_is_generator = False | ||
self.replay_size = replay_size | ||
self.increasing_replay_size = increasing_replay_size | ||
self.is_weighted_replay = is_weighted_replay | ||
self.weight_replay_loss_factor = weight_replay_loss_factor | ||
self.weight_replay_loss = weight_replay_loss | ||
|
||
def before_training(self, strategy, *args, **kwargs): | ||
"""Checks whether we are using a user defined external generator | ||
|
@@ -85,7 +91,7 @@ def before_training(self, strategy, *args, **kwargs): | |
self.model_is_generator = True | ||
|
||
def before_training_exp( | ||
self, strategy, num_workers: int = 0, shuffle: bool = True, **kwargs | ||
self, strategy, num_workers: int = 0, shuffle: bool = True, **kwargs | ||
): | ||
""" | ||
Make deep copies of generator and solver before training new experience. | ||
|
@@ -101,19 +107,67 @@ def before_training_exp( | |
self.old_model.eval() | ||
|
||
def after_training_exp( | ||
self, strategy, num_workers: int = 0, shuffle: bool = True, **kwargs | ||
self, strategy, num_workers: int = 0, shuffle: bool = True, **kwargs | ||
): | ||
""" | ||
Set untrained_solver boolean to False after (the first) experience, | ||
in order to start training with replay data from the second experience. | ||
""" | ||
self.untrained_solver = False | ||
|
||
def before_backward(self, strategy: Template, *args, **kwargs) -> Any: | ||
super().before_backward(strategy, *args, **kwargs) | ||
""" | ||
Generate replay data and calculate the loss on the replay data. | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. docstring must be before super() call |
||
Add weighted loss to the total loss if the user has set the weight_replay_loss | ||
""" | ||
if not self.is_weighted_replay: | ||
# If we are not using weighted loss, ignore this method | ||
return | ||
|
||
if self.untrained_solver: | ||
# do not generate on the first experience | ||
return | ||
|
||
# determine how many replay data points to generate | ||
if self.replay_size: | ||
number_replays_to_generate = self.replay_size | ||
else: | ||
if self.increasing_replay_size: | ||
number_replays_to_generate = len(strategy.mbatch[0]) * ( | ||
strategy.experience.current_experience | ||
) | ||
else: | ||
number_replays_to_generate = len(strategy.mbatch[0]) | ||
replay_data = self.old_generator.generate(number_replays_to_generate).to( | ||
strategy.device | ||
) | ||
# get labels for replay data | ||
if not self.model_is_generator: | ||
with torch.no_grad(): | ||
replay_output = self.old_model(replay_data).argmax(dim=-1) | ||
else: | ||
# Mock labels: | ||
replay_output = torch.zeros(replay_data.shape[0]) | ||
|
||
# make copy of mbatch | ||
mbatch = deepcopy(strategy.mbatch) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. do you need a deepcopy here? |
||
# replace mbatch with replay data, calculate loss and add to strategy.loss | ||
strategy.mbatch = [replay_data, replay_output, strategy.mbatch[-1]] | ||
strategy.forward() | ||
strategy.loss += self.weight_replay_loss * strategy.criterion() | ||
self.weight_replay_loss *= self.weight_replay_loss_factor | ||
# restore mbatch | ||
strategy.mbatch = mbatch | ||
|
||
def before_training_iteration(self, strategy, **kwargs): | ||
""" | ||
Generating and appending replay data to current minibatch before | ||
each training iteration. | ||
""" | ||
if self.is_weighted_replay: | ||
# When using weighted loss, do not add replay data to the current minibatch | ||
return | ||
if self.untrained_solver: | ||
# The solver needs to be trained before labelling generated data and | ||
# the generator needs to be trained before we can sample. | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
################################################################################ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please modify one of the existing examples instead of creating a new one |
||
# Copyright (c) 2021 ContinualAI. # | ||
# Copyrights licensed under the MIT License. # | ||
# See the accompanying LICENSE file for terms. # | ||
# # | ||
# Date: 13-02-2024 # | ||
# Author(s): Imron Gamidli # | ||
# # | ||
################################################################################ | ||
|
||
""" | ||
This is a simple example on how to use the GenerativeReplay strategy with weighted replay loss. | ||
""" | ||
import datetime | ||
import argparse | ||
import torch | ||
from torch.nn import CrossEntropyLoss | ||
from torchvision import transforms | ||
from torchvision.transforms import ToTensor, RandomCrop | ||
import torch.optim.lr_scheduler | ||
from avalanche.benchmarks import SplitMNIST | ||
from avalanche.models import SimpleMLP | ||
from avalanche.training.supervised import GenerativeReplay | ||
from avalanche.evaluation.metrics import ( | ||
forgetting_metrics, | ||
accuracy_metrics, | ||
loss_metrics, | ||
) | ||
from avalanche.logging import InteractiveLogger, TextLogger | ||
from avalanche.training.plugins import EvaluationPlugin | ||
|
||
|
||
def main(args): | ||
# --- CONFIG | ||
device = torch.device( | ||
f"cuda:{args.cuda}" if torch.cuda.is_available() and args.cuda >= 0 else "cpu" | ||
) | ||
|
||
# --- BENCHMARK CREATION | ||
benchmark = SplitMNIST(n_experiences=5, seed=1234, fixed_class_order=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) | ||
# --------- | ||
|
||
# MODEL CREATION | ||
model = SimpleMLP(num_classes=benchmark.n_classes, hidden_size=10) | ||
|
||
# choose some metrics and evaluation method | ||
interactive_logger = InteractiveLogger() | ||
file_name = 'logs/log_' + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + '.log' | ||
text_logger = TextLogger(open(file_name, 'a')) | ||
|
||
eval_plugin = EvaluationPlugin( | ||
# accuracy_metrics(minibatch=True, epoch=True, experience=True, stream=True), | ||
accuracy_metrics(experience=True, stream=True), | ||
loss_metrics(minibatch=True), | ||
# loss_metrics(minibatch=True, epoch=True, experience=True, stream=True), | ||
# forgetting_metrics(experience=True), | ||
loggers=[interactive_logger, text_logger], | ||
) | ||
|
||
# CREATE THE STRATEGY INSTANCE (GenerativeReplay) | ||
cl_strategy = GenerativeReplay( | ||
model, | ||
torch.optim.Adam(model.parameters(), lr=0.001), | ||
CrossEntropyLoss(), | ||
train_mb_size=100, | ||
train_epochs=2, | ||
eval_mb_size=100, | ||
device=device, | ||
evaluator=eval_plugin, | ||
is_weighted_replay=True, | ||
weight_replay_loss_factor=2.0, | ||
weight_replay_loss=0.001, | ||
) | ||
|
||
# TRAINING LOOP | ||
print("Starting experiment...") | ||
results = [] | ||
for experience in benchmark.train_stream: | ||
print("Start of experience ", experience.current_experience) | ||
cl_strategy.train(experience) | ||
print("Training completed") | ||
|
||
print("Computing accuracy on the whole test set") | ||
results.append(cl_strategy.eval(benchmark.test_stream)) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--cuda", | ||
type=int, | ||
default=0, | ||
help="Select zero-indexed cuda device. -1 to use CPU.", | ||
) | ||
args = parser.parse_args() | ||
print(args) | ||
main(args) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can you add the documentation for the arguments?