-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
+ compared implementations with sklearn
! missing parameter comparaison
- Loading branch information
1 parent
4f7da77
commit 60a6376
Showing
1 changed file
with
113 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
from naive_bayes import * | ||
from sklearn.model_selection import train_test_split | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn.naive_bayes import GaussianNB | ||
from metrics import compute_metrics | ||
import softmax | ||
from matplotlib import pyplot as plt | ||
from main import FEAT, LABELS | ||
import pandas as pd | ||
import numpy as np | ||
|
||
# --------------------------------------------------------------------------- | ||
# ECHANTILLONNAGE | ||
|
||
# Prendre 50 échantillons de chaque classe | ||
SAMPLES = 50 | ||
parameters = get_distrib_parameters(FEAT, LABELS) | ||
classes = parameters.keys() | ||
|
||
sampled_data = [] | ||
sampled_labels = [] | ||
|
||
# On génère des échantillons pour chaque classe | ||
for y in classes: | ||
class_samples = [] | ||
|
||
for variable_params in parameters[y]: | ||
|
||
mean, std = variable_params | ||
samples = np.random.normal(mean, std, SAMPLES) | ||
class_samples.append(samples) | ||
|
||
class_samples = np.column_stack(class_samples) | ||
sampled_data.append(class_samples) | ||
sampled_labels.extend([y]*SAMPLES) | ||
|
||
# On concatène les échantillons | ||
sampled_data = np.vstack(sampled_data) | ||
sampled_labels = np.array(sampled_labels) | ||
# --------------------------------------------------------------------------- | ||
|
||
|
||
# --------------------------------------------------------------------------- | ||
# COMPARAISON | ||
|
||
for c in classes: | ||
means, stds = zip(*parameters[c]) | ||
print(f"Classe {c} réelle") | ||
print(f"Mean: {means}") | ||
print(f"Std: {stds}") | ||
|
||
mean_sampled = np.mean(sampled_data[sampled_labels == c], axis=0) | ||
std_sampled = np.std(sampled_data[sampled_labels == c], axis=0) | ||
|
||
print(f"Classe {c} échantillonnée") | ||
print(f"Mean: {mean_sampled}") | ||
print(f"Std: {std_sampled}") | ||
|
||
vars = [0, 1, 2, 3] | ||
|
||
|
||
print("\n\n") | ||
|
||
X_train, X_test, y_train, y_test = train_test_split(sampled_data, sampled_labels, test_size=0.3, random_state=42) | ||
|
||
X_train = pd.DataFrame(X_train) | ||
X_test = pd.DataFrame(X_test) | ||
|
||
sampled_params = {c: list(zip(np.mean(X_train[y_train == c], axis=0), np.std(X_train[y_train == c], axis=0))) for c in classes} | ||
|
||
# --- Notre implémentation de Naive Bayes --- | ||
print("Notre Naive Bayes") | ||
predicted_nb = predict_bayes_all(X_test, sampled_params) | ||
print(compute_metrics(y_test, predicted_nb)) | ||
|
||
# -------------------------------------------- | ||
|
||
# --- SKLearn Naive Bayes --- | ||
print("Sklearn Naive Bayes") | ||
gnb = GaussianNB() | ||
gnb.fit(X_train, y_train) | ||
predicted_gnb = gnb.predict(X_test) | ||
print(compute_metrics(y_test, predicted_gnb)) | ||
|
||
# ---------------------------- | ||
|
||
# --- Notre implémentation de Logistic Regression --- | ||
print("Notre Logistic Regression") | ||
theta = softmax.train_log_reg_2(X_train, y_train, np.zeros((len(classes), X_train.shape[1] + 1)), 1000, 1e-4) | ||
predicted_logreg = softmax.predict_log_reg_2(X_test, theta) | ||
print(compute_metrics(y_test, predicted_logreg)) | ||
|
||
|
||
# -------------------------------------------- | ||
|
||
# --- SKLearn Logistic Regression --- | ||
print("Sklearn Logistic Regression") | ||
lr = LogisticRegression() | ||
lr.fit(X_train, y_train) | ||
predicted_lr = lr.predict(X_test) | ||
print(compute_metrics(y_test, predicted_lr)) | ||
|
||
# -------------------------------------------- | ||
|
||
# --------------------------------------------------------------------------- | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|