Skip to content

DerekAI/repeatnet-pytorch-YooChoose

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

What's here

Here is a little bit modernized implementation of RepeatNet from orginal paper. It includes data preprocessing step and a little style enhancements.

Running the training process

To run training process on YooChoose dataset, just do following in source root:

torchrun ./Run.py --mode='train'

You can see in terminal something like:

Torch version: 1.10.1
Data size: 952
init item_emb.weight torch.Size([52739, 128])
init enc.weight_ih_l0 torch.Size([192, 128])
init enc.weight_hh_l0 torch.Size([192, 64])
init enc.bias_ih_l0 torch.Size([192])
init enc.bias_hh_l0 torch.Size([192])
init enc.weight_ih_l0_reverse torch.Size([192, 128])
init enc.weight_hh_l0_reverse torch.Size([192, 64])
init enc.bias_ih_l0_reverse torch.Size([192])
init enc.bias_hh_l0_reverse torch.Size([192])
init mode_attn.linear_key.weight torch.Size([128, 128])
init mode_attn.linear_query.weight torch.Size([128, 128])
init mode_attn.linear_query.bias torch.Size([128])
init mode_attn.v.weight torch.Size([1, 128])
init mode.weight torch.Size([2, 128])
init mode.bias torch.Size([2])
init repeat_attn.linear_key.weight torch.Size([128, 128])
init repeat_attn.linear_query.weight torch.Size([128, 128])
init repeat_attn.linear_query.bias torch.Size([128])
init repeat_attn.v.weight torch.Size([1, 128])
init explore_attn.linear_key.weight torch.Size([128, 128])
init explore_attn.linear_query.weight torch.Size([128, 128])
init explore_attn.linear_query.bias torch.Size([128])
init explore_attn.v.weight torch.Size([1, 128])
init explore.weight torch.Size([52739, 128])
init explore.bias torch.Size([52739])
Method train Epoch 0 Batch  1 Loss  [7.986617088317871] Time  27.70906114578247
Method train Epoch 1 Batch  1 Loss  [7.9715495109558105] Time  8.815345048904419
Method train Epoch 2 Batch  1 Loss  [7.954436302185059] Time  9.516870021820068
Method train Epoch 3 Batch  1 Loss  [7.938322067260742] Time  9.64490294456482
Method train Epoch 4 Batch  1 Loss  [7.924196243286133] Time  9.166892051696777
Method train Epoch 5 Batch  1 Loss  [7.906176567077637] Time  9.503098011016846
Method train Epoch 6 Batch  1 Loss  [7.890024185180664] Time  9.123106002807617
Method train Epoch 7 Batch  1 Loss  [7.869630813598633] Time  9.68349814414978
Method train Epoch 8 Batch  1 Loss  [7.855503082275391] Time  19.01116394996643
Method train Epoch 9 Batch  1 Loss  [7.839035987854004] Time  7.93090295791626
Method train Epoch 10 Batch  1 Loss  [7.816061019897461] Time  8.038913011550903

The first part of logs described built Neural Network structure. The second part is about training and losses on each of epoches.

About

Training RepeatNet on Yoochoose dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%