-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
3,245 additions
and
73 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
import pandas as pd | ||
import os | ||
|
||
|
||
path = './data/alzkb_v2-populated.csv' | ||
df= pd.read_csv(path) | ||
df= pd.concat([df,pd.DataFrame(columns=['sourceDB','unbiased','affinity_nM','p_fisher','z_score','correlation','score','confidence'])]) | ||
|
||
# hetionet-custom-edges.tsv | ||
data_dir = "./AlzKB_Raw_Data" | ||
hetionet_custom = pd.read_table(os.path.join(data_dir,'hetionet/hetionet-custom-edges.tsv')) | ||
|
||
hetio_custom = { | ||
'CbG':'CHEMICALBINDSGENE', | ||
'DrD':'DISEASEASSOCIATESWITHDISEASE', # no results | ||
'DlA':'DISEASELOCALIZESTOANATOMY', | ||
'DpS':'SYMPTOMMANIFESTATIONOFDISEASE' | ||
} | ||
|
||
|
||
affinity_nM = hetionet_custom[hetionet_custom['metaedge']=='CbG'] | ||
affinity_nM['xrefDrugbank'] = affinity_nM['source'].str.split('::').str[-1] | ||
affinity_nM['xrefNcbiGene'] = affinity_nM['target'].str.split('::').str[-1].astype(int) | ||
affinity_nM = affinity_nM.merge(df[['_id','xrefDrugbank']].rename(columns={'_id':'_start'}), on='xrefDrugbank', how='left') | ||
affinity_nM = affinity_nM.merge(df[['_id','xrefNcbiGene']].rename(columns={'_id':'_end'}), on='xrefNcbiGene', how='left') | ||
affinity_nM['_type'] = hetio_custom['CbG'] | ||
merged_df = df.merge(affinity_nM, on=['_start', '_end', '_type'], suffixes=('', '_new'), how='left') | ||
for column in ['sourceDB', 'unbiased', 'affinity_nM']: | ||
df[column] = merged_df[column + '_new'].combine_first(df[column]) | ||
df.shape | ||
|
||
|
||
disgenet = pd.read_table('./AlzKB_Raw_Data/disgenet/CUSTOM/disease_mappings_alzheimer.tsv') | ||
disgenet = disgenet[disgenet['vocabulary']=='DO'] | ||
|
||
|
||
p_fisher_DlA = hetionet_custom[hetionet_custom['metaedge']=='DlA'] | ||
|
||
p_fisher_DlA['do_id'] = p_fisher_DlA['source'].str.split('::').str[-1].str.split(':').str[-1] | ||
p_fisher_DlA['xrefUberon'] = p_fisher_DlA['target'].str.split('::').str[-1] | ||
|
||
p_fisher_DlA = p_fisher_DlA.merge(disgenet, left_on='do_id', right_on= 'code') | ||
p_fisher_DlA['_start'] = 'disease_'+p_fisher_DlA['diseaseId'].str.lower() | ||
p_fisher_DlA = p_fisher_DlA.merge(df[['_id','xrefUberon']].rename(columns={'_id':'_end'}), on='xrefUberon', how='left') | ||
p_fisher_DlA['_type'] = hetio_custom['DlA'] | ||
|
||
p_fisher_DpS = hetionet_custom[hetionet_custom['metaedge']=='DpS'] | ||
|
||
p_fisher_DpS['xrefMeSH'] = p_fisher_DpS['target'].str.split('::').str[-1] | ||
p_fisher_DpS['do_id'] = p_fisher_DpS['source'].str.split('::').str[-1].str.split(':').str[-1] | ||
|
||
p_fisher_DpS = p_fisher_DpS.merge(df[['_id','xrefMeSH']].rename(columns={'_id':'_start'}), on='xrefMeSH', how='left') | ||
p_fisher_DpS = p_fisher_DpS.merge(disgenet, left_on='do_id', right_on= 'code') | ||
p_fisher_DpS['_end'] = 'disease_'+p_fisher_DpS['diseaseId'].str.lower() | ||
p_fisher_DpS['_type'] = hetio_custom['DpS'] | ||
|
||
p_fisher = pd.concat([p_fisher_DlA, p_fisher_DpS]) | ||
|
||
merged_df = df.merge(p_fisher, on=['_start', '_end', '_type'], suffixes=('', '_new'), how='left') | ||
for column in ['sourceDB', 'unbiased', 'p_fisher']: | ||
df[column] = merged_df[column + '_new'].combine_first(df[column]) | ||
df.shape | ||
|
||
|
||
# hetionet-v1.0-edges.sif | ||
#https://github.com/dhimmel/integrate/blob/master/integrate.ipynb | ||
|
||
import hetio.hetnet | ||
import hetio.readwrite | ||
import hetio.stats | ||
|
||
path = 'https://raw.githubusercontent.com/dhimmel/integrate/master/data/hetnet.json.bz2' | ||
graph = hetio.readwrite.read_graph(path, formatting=None) | ||
|
||
|
||
#https://github.com/hetio/hetnetpy/blob/main/hetnetpy/readwrite.py | ||
import collections | ||
import operator | ||
import pandas as pd | ||
|
||
def write_nodetable(graph): | ||
"""Write a tabular encoding of the graph nodes.""" | ||
rows = list() | ||
for node in graph.node_dict.values(): | ||
row = collections.OrderedDict() | ||
row["kind"] = node.metanode.identifier | ||
row["id"] = str(node) | ||
row["name"] = node.name | ||
row["source"] = node.data['source'] | ||
rows.append(row) | ||
rows.sort(key=operator.itemgetter("kind", "id")) | ||
fieldnames = ["id", "name", "kind", "source"] | ||
df_nodes_tsv = pd.DataFrame(rows, columns=fieldnames) | ||
print(df_nodes_tsv.shape) | ||
return df_nodes_tsv | ||
|
||
|
||
def write_edgetable(graph): | ||
"""Write a tsv of the graph edges.""" | ||
rows = list() | ||
edge_properties=["sourceDB", "unbiased", "affinity_nM", "z_score", "p_fisher", "correlation"] | ||
fieldnames =["source", "metaedge", "target"] | ||
fieldnames = fieldnames+edge_properties | ||
metaedge_to_edges = graph.get_metaedge_to_edges(exclude_inverts=True) | ||
for metaedge, edges in metaedge_to_edges.items(): | ||
for edge in edges: | ||
row = collections.OrderedDict() | ||
row["source"] = edge.source | ||
row["metaedge"] = edge.metaedge.abbrev | ||
row["target"] = edge.target | ||
for pro in edge_properties: | ||
if pro =='sourceDB': | ||
if 'source' in edge.data.keys(): | ||
row[pro]=edge.data['source'] | ||
else: | ||
row[pro]=None | ||
else: | ||
if pro in edge.data.keys(): | ||
row[pro]=edge.data[pro] | ||
else: | ||
row[pro]=None | ||
rows.append(row) | ||
df_edges_tsv = pd.DataFrame(rows, columns=fieldnames) | ||
print(df_edges_tsv.shape) | ||
return df_edges_tsv | ||
|
||
hetionet = write_edgetable(graph) | ||
hetionet['source']=hetionet['source'].astype(str) | ||
hetionet['target']=hetionet['target'].astype(str) | ||
hetionet | ||
|
||
hetio = { | ||
'CuG':'CHEMICALINCREASESEXPRESSION', | ||
'CdG':'CHEMICALDECREASESEXPRESSION', | ||
'GcG':'GENECOVARIESWITHGENE', | ||
'Gr>G':'GENEREGULATESGENE' | ||
} | ||
|
||
|
||
z_score = hetionet[hetionet['metaedge']=='CuG'] | ||
z_score['xrefDrugbank'] = z_score['source'].str.split('::').str[-1] | ||
z_score['xrefNcbiGene'] = z_score['target'].str.split('::').str[-1].astype(int) | ||
|
||
z_score = z_score.merge(df[['_id','xrefDrugbank']].rename(columns={'_id':'_start'}), on='xrefDrugbank', how='left') | ||
z_score = z_score.merge(df[['_id','xrefNcbiGene']].rename(columns={'_id':'_end'}), on='xrefNcbiGene', how='left') | ||
z_score['_type'] = hetio['CuG'] | ||
|
||
z_score_all = z_score | ||
|
||
z_score = hetionet[hetionet['metaedge']=='CdG'] | ||
z_score['xrefDrugbank'] = z_score['source'].str.split('::').str[-1] | ||
z_score['xrefNcbiGene'] = z_score['target'].str.split('::').str[-1].astype(int) | ||
|
||
z_score = z_score.merge(df[['_id','xrefDrugbank']].rename(columns={'_id':'_start'}), on='xrefDrugbank', how='left') | ||
z_score = z_score.merge(df[['_id','xrefNcbiGene']].rename(columns={'_id':'_end'}), on='xrefNcbiGene', how='left') | ||
z_score['_type'] = hetio['CdG'] | ||
|
||
z_score_all = pd.concat([z_score_all,z_score]) | ||
|
||
merged_df = df.merge(z_score_all, on=['_start', '_end', '_type'], suffixes=('', '_new'), how='left') | ||
for column in ['sourceDB', 'unbiased', 'z_score']: | ||
df[column] = merged_df[column + '_new'].combine_first(df[column]) | ||
df.shape | ||
|
||
|
||
correlation = pd.read_table(os.path.join(data_dir,'hetionet/geneCovariesWithGene_correlation.tsv')) | ||
|
||
correlation = correlation.merge(df[['_id','xrefNcbiGene']].rename(columns={'_id':'_start'}), left_on='source_entrez', right_on='xrefNcbiGene', how='left') | ||
correlation = correlation.merge(df[['_id','xrefNcbiGene']].rename(columns={'_id':'_end'}), left_on='target_entrez', right_on='xrefNcbiGene', how='left') | ||
correlation['_type'] = hetio['GcG'] | ||
correlation['sourceDB'] = 'Hetionet - ERC' | ||
correlation['unbiased'] = True | ||
|
||
merged_df = df.merge(correlation, on=['_start', '_end', '_type'], suffixes=('', '_new'), how='left') | ||
for column in ['sourceDB', 'unbiased', 'correlation']: | ||
df[column] = merged_df[column + '_new'].combine_first(df[column]) | ||
df.shape | ||
df.loc[~df['correlation'].isna()] | ||
|
||
|
||
#DisGeNET | ||
score = pd.read_table('./AlzKB_Raw_Data/disgenet/curated_gene_disease_associations.tsv') | ||
score['sourceDB'] = 'DisGeNET - '+score['source'] | ||
|
||
score = score.merge(df[['_id','xrefNcbiGene']].rename(columns={'_id':'_start'}), left_on='geneId', right_on='xrefNcbiGene', how='left') | ||
score['_end'] = 'disease_'+score['diseaseId'].str.lower() | ||
score['_type'] = 'GENEASSOCIATESWITHDISEASE' | ||
|
||
merged_df = df.merge(score, on=['_start', '_end', '_type'], suffixes=('', '_new'), how='left') | ||
for column in ['sourceDB', 'score']: | ||
df[column] = merged_df[column + '_new'].combine_first(df[column]) | ||
df.shape | ||
|
||
|
||
#TF | ||
confidence = pd.read_table('./AlzKB_Raw_Data/dorothea/tf.tsv') | ||
confidence | ||
|
||
confidence = pd.read_table('./AlzKB_Raw_Data/dorothea/tf.tsv') | ||
|
||
confidence = confidence.merge(df[['_id','TF']].rename(columns={'_id':'_start'}), on='TF', how='left') | ||
confidence = confidence.merge(df[['_id','geneSymbol']].rename(columns={'_id':'_end'}), left_on='Gene', right_on='geneSymbol', how='left') | ||
|
||
confidence['_type'] = 'TRANSCRIPTIONFACTORINTERACTSWITHGENE' | ||
|
||
merged_df = df.merge(confidence, on=['_start', '_end', '_type'], suffixes=('', '_new'), how='left') | ||
for column in ['sourceDB', 'confidence']: | ||
df[column] = merged_df[column + '_new'].combine_first(df[column]) | ||
df.shape | ||
|
||
#save data file | ||
df.to_csv('./data/alzkb_v2.0.0_with_edge_properties.csv') | ||
|
||
|
||
|
Oops, something went wrong.