Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

removed utility function (DRY) addressing #154 #157

Merged
merged 1 commit into from
Feb 19, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 35 additions & 39 deletions src/gfn/containers/trajectories.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,7 @@ def __init__(
self.env = env
self.is_backward = is_backward
self.states = (
states
if states is not None
else env.states_from_batch_shape((0, 0))
states if states is not None else env.states_from_batch_shape((0, 0))
)
assert len(self.states.batch_shape) == 2
self.actions = (
Expand Down Expand Up @@ -260,59 +258,43 @@ def extend(self, other: Trajectories) -> None:
):
batch_shape = self.actions.batch_shape
n_bs = len(batch_shape)

# Cast other to match self.
output_dtype = self.estimator_outputs.dtype
other.estimator_outputs = other.estimator_outputs.to(dtype=output_dtype)

if n_bs == 1:
# Concatenate along the only batch dimension.
self.estimator_outputs = torch.cat(
(self.estimator_outputs, other.estimator_outputs),
dim=0,
)

elif n_bs == 2:
if self.estimator_outputs.shape[0] != other.estimator_outputs.shape[0]:
# First we need to pad the first dimension on either self or other.
self_shape = np.array(self.estimator_outputs.shape)
other_shape = np.array(other.estimator_outputs.shape)
required_first_dim = max(self_shape[0], other_shape[0])

# TODO: This should be a single reused function (#154)
# The size of self needs to grow to match other along dim=0.
if self_shape[0] < other_shape[0]:
pad_dim = required_first_dim - self_shape[0]
pad_dim_full = (pad_dim,) + tuple(self_shape[1:])
output_padding = torch.full(
pad_dim_full,
fill_value=-float("inf"),
dtype=self.estimator_outputs.dtype, # TODO: This isn't working! Hence the cast below...
device=self.estimator_outputs.device,
)
self.estimator_outputs = torch.cat(
(self.estimator_outputs, output_padding),
dim=0,
# Concatenate along the first dimension, padding where required.
self_dim0 = self.estimator_outputs.shape[0]
other_dim0 = other.estimator_outputs.shape[0]
if self_dim0 != other_dim0:
# We need to pad the first dimension on either self or other.
required_first_dim = max(self_dim0, other_dim0)

if self_dim0 < other_dim0:
self.estimator_outputs = pad_dim0_to_target(
self.estimator_outputs,
required_first_dim,
)

# The size of other needs to grow to match self along dim=0.
if other_shape[0] < self_shape[0]:
pad_dim = required_first_dim - other_shape[0]
pad_dim_full = (pad_dim,) + tuple(other_shape[1:])
output_padding = torch.full(
pad_dim_full,
fill_value=-float("inf"),
dtype=other.estimator_outputs.dtype, # TODO: This isn't working! Hence the cast below...
device=other.estimator_outputs.device,
)
other.estimator_outputs = torch.cat(
(other.estimator_outputs, output_padding),
dim=0,
elif self_dim0 > other_dim0:
other.estimator_outputs = pad_dim0_to_target(
other.estimator_outputs,
required_first_dim,
)

# Concatenate the tensors along the second dimension.
self.estimator_outputs = torch.cat(
(self.estimator_outputs, other.estimator_outputs),
dim=1,
).to(
dtype=output_dtype
) # Cast to prevent single precision becoming double precision... weird.
)

# Sanity check. TODO: Remove?
assert self.estimator_outputs.shape[:n_bs] == batch_shape
Expand Down Expand Up @@ -376,3 +358,17 @@ def to_non_initial_intermediary_and_terminating_states(
terminating_states = self.last_states
terminating_states.log_rewards = self.log_rewards
return intermediary_states, terminating_states


def pad_dim0_to_target(a: torch.Tensor, target_dim0: int) -> torch.Tensor:
"""Pads tensor a to match the dimention of b."""
assert a.shape[0] < target_dim0, "a is already larger than target_dim0!"
pad_dim = target_dim0 - a.shape[0]
pad_dim_full = (pad_dim,) + tuple(a.shape[1:])
output_padding = torch.full(
pad_dim_full,
fill_value=-float("inf"),
dtype=a.dtype, # TODO: This isn't working! Hence the cast below...
device=a.device,
)
return torch.cat((a, output_padding), dim=0)
Loading