Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

device handling fix #159

Merged
merged 5 commits into from
Feb 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/gfn/gflownet/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ class GFlowNet(ABC, nn.Module, Generic[TrainingSampleType]):

A formal definition of GFlowNets is given in Sec. 3 of [GFlowNet Foundations](https://arxiv.org/pdf/2111.09266).
"""
log_reward_clip_min = float("-inf") # Default off.

@abstractmethod
def sample_trajectories(
Expand Down Expand Up @@ -214,7 +215,7 @@ def get_trajectories_scores(
total_log_pb_trajectories = log_pb_trajectories.sum(dim=0)

log_rewards = trajectories.log_rewards
# TODO: log_reward_clip_min isn't defined in base (#155).

if math.isfinite(self.log_reward_clip_min) and log_rewards is not None:
log_rewards = log_rewards.clamp_min(self.log_reward_clip_min)

Expand Down
4 changes: 2 additions & 2 deletions src/gfn/states.py
Original file line number Diff line number Diff line change
Expand Up @@ -410,9 +410,9 @@ def set_nonexit_action_masks(self, cond, allow_exit: bool):
trajectory - if so, it should be set to True.
"""
if allow_exit:
exit_idx = torch.zeros(self.batch_shape + (1,))
exit_idx = torch.zeros(self.batch_shape + (1,)).to(cond.device)
else:
exit_idx = torch.ones(self.batch_shape + (1,))
exit_idx = torch.ones(self.batch_shape + (1,)).to(cond.device)
self.forward_masks[torch.cat([cond, exit_idx], dim=-1).bool()] = False

def set_exit_masks(self, batch_idx):
Expand Down
6 changes: 0 additions & 6 deletions src/gfn/utils/modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,6 @@ def __init__(
else:
self.torso = torso
self.last_layer = nn.Linear(self.torso.hidden_dim, output_dim)
self.device = None

def forward(
self, preprocessed_states: TT["batch_shape", "input_dim", float]
Expand All @@ -66,11 +65,6 @@ def forward(
ingestion by the MLP.
Returns: out, a set of continuous variables.
"""
if self.device is None:
self.device = preprocessed_states.device
self.to(
self.device
) # TODO: This is maybe fine but could result in weird errors if the model keeps bouncing between devices.
out = self.torso(preprocessed_states)
out = self.last_layer(out)
return out
Expand Down
66 changes: 66 additions & 0 deletions tutorials/examples/train_hypergrid_simple.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
#!/usr/bin/env python
import torch
from tqdm import tqdm

from gfn.gflownet import TBGFlowNet
from gfn.gym import HyperGrid
from gfn.modules import DiscretePolicyEstimator
from gfn.samplers import Sampler
from gfn.utils import NeuralNet

torch.manual_seed(0)
exploration_rate = 0.5
learning_rate = 0.0005

# Setup the Environment.
env = HyperGrid(
ndim=5,
height=2,
device_str="cuda" if torch.cuda.is_available() else "cpu",
)

# Build the GFlowNet.
module_PF = NeuralNet(
input_dim=env.preprocessor.output_dim,
output_dim=env.n_actions,
)
module_PB = NeuralNet(
input_dim=env.preprocessor.output_dim,
output_dim=env.n_actions - 1,
torso=module_PF.torso,
)
pf_estimator = DiscretePolicyEstimator(
module_PF, env.n_actions, is_backward=False, preprocessor=env.preprocessor
)
pb_estimator = DiscretePolicyEstimator(
module_PB, env.n_actions, is_backward=True, preprocessor=env.preprocessor
)
gflownet = TBGFlowNet(init_logZ=0.0, pf=pf_estimator, pb=pb_estimator, off_policy=True)

# Feed pf to the sampler.
sampler = Sampler(estimator=pf_estimator)

# Move the gflownet to the GPU.
if torch.cuda.is_available():
gflownet = gflownet.to("cuda")

# Policy parameters have their own LR. Log Z gets dedicated learning rate
# (typically higher).
optimizer = torch.optim.Adam(gflownet.pf_pb_parameters(), lr=1e-3)
optimizer.add_param_group({"params": gflownet.logz_parameters(), "lr": 1e-1})

n_iterations = int(1e4)
batch_size = int(1e5)

for i in (pbar := tqdm(range(n_iterations))):
trajectories = sampler.sample_trajectories(
env,
n_trajectories=batch_size,
off_policy=True,
epsilon=exploration_rate,
)
optimizer.zero_grad()
loss = gflownet.loss(env, trajectories)
loss.backward()
optimizer.step()
pbar.set_postfix({"loss": loss.item()})
Loading