Skip to content

HECBioSim/hpcbench

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hpcbench

A set of benchmarks for biomolecular simulation tools.

Features

  • Log and scrape data from running simulations
  • Analyse performance, scaling, system utilisation, temperature, etc
  • Automatically generate and run benchmarks for different HPC systems and molecular simulation packages
  • Built-in tests for correctness of benchmarked systems

Current support

  • Supported simulations
    • GROMACS
    • AMBER
    • OpenMM
    • NAMD
    • LAMMPS
    • QM software
    • Cryo-EM software
    • AI workflows
    • At least one multiscale workflow (eventually!)
  • Supported HPC systems
    • JADE
    • ARCHER2
    • Grace Hopper Testbed
    • COSMA
    • TURSA
    • ISAMBARD
  • Supported schedulers
    • SLURM
    • SGE
    • PBS/Torque

How to use

  • Download or clone this repo
  • Run python setup.py install
  • Run hpcbench in the terminal for a list of tools. Run hpcbench <toolname> to run that tool.
  • import hpcbench in python for the API.

Example: attach hpcbench loggers to an existing simulation script

The following HPC submission script has been modified to create cpu and gpu logs, as well as dump the sytem information, slurm parameters and gromacs log to json files. The call to collate merges all the json files together.

#!/bin/bash
#SBATCH --nodes=1 
#SBATCH --time=00:30:00
#SBATCH --job-name=benchmark
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=4
#SBATCH --partition=devel

module load gromacs
conda init
hpcbench infolog sysinfo.json # log system info
hpcbench gpulog gpulog.json & gpuid=$! # log GPU utilisation
hpcbench cpulog "'gmx mdrun -s benchmark.tpr'" cpulog.json & cpuid=$! # log gromacs CPU usage

# Nvidia optimisations
export GMX_FORCE_UPDATE_DEFAULT_GPU=true 
export GMX_GPU_DD_COMMS=true
export GMX_GPU_PME_PP_COMMS=true

gmx mdrun -s benchmark.tpr -ntomp 10 -nb gpu -pme gpu -bonded gpu -dlb no -nstlist 300 -pin on -v -gpu_id 0

kill $gpuid
kill $cpuid

hpcbench sacct $SLURM_JOB_ID accounting.json # log slurm accounting data
hpcbench gmxlog md.log run.json # parse gromacs log file and log relevant performance data
hpcbench slurmlog $0 slurm.json # log slurm variables
hpcbench extra -e "'Software:GROMACS'" -e "'Machine:JADE2'" meta.json # any other useful info
hpcbench collate -l sysinfo.json gpulog.json cpulog.json accounting.json run.json slurm.json meta.json -o output.json # merge all json files together

Example: create and submit a large set of benchmark scripts from a template

hpcbench can create many jobs at once using a job template, which is similar to the above job, but with certain variables (like the number of cpus and gpus) replaced with $-based substitutions. Specifying multiple values will lead hpcbench to generate all possible combinations of those values. Running makejobs -h will list out all the built-in templates.

hpcbench makejobs \
-s jobname=test \
-s num_gpus=gres:1,gres:2,gres:4,gres:8 \
-s partition=small \
-s benchmarkfile=benchmark.tpr \
-s comment=exmple \
-s machine=JADE \
-s benchout=output \
-e /home/rob/benchmarks/gromacs/20k-atoms/benchmark.tpr \
-t jade_gromacs_gpu.sh \
-o testgmgpu \

Example: plot results

The following script searches through a directory for hpcbench output files matching the specified criteria, and plots the results. The values on the x and y axes are determined by the x and y parameters. The 'label' parameter works like the 'matching' parameters, but it will accept all values of that field, and assign each one a label on the resulting plot.

# Plot scaling across number of GPUs
hpcbench scaling \
--matching "'meta:Machine=JADE2'" \
--x "'slurm:gres'" \
--y "'run:Totals:Wall time (s)'" \
--l "'run:Totals:Atoms'" \
--d "'/path/to/hpcbench/json/files'" \
--outside \
--outfile jade_gpu_scaling.pdf

# Plot scaling with system size
hpcbench scaling \
--matching "'meta:Machine=JADE2'" \
--x "'run:Totals:Number of atoms'" \
--y "'run:Totals:ns/day'" \
--l "'slurm:program'" \
--d "'/path/to/hpcbench/json/files'" \
-- outside \
--outfile jade_nsday.pdf

# Make a stackplot
hpcbench scaling \
--matching "'meta:Machine=JADE2'" \
--matching "'slurm:gres=gpu:1'" \
--y "'run:Cycles:?:Wall time (s)'" \
--x "'run:Totals:Number of atoms'" \
--d "'/path/to/hpcbench/json/files'" \
-- outside \
--outfile atoms_stack.pdf

# Plot GPU utilisation, with one log for each system size
hpcbench logs \
--matching "'meta:Machine=JADE2'" \
--matching "'slurm:gres=gpu:1'" \
--l "'gromacs:Totals:Atoms'" \
--y "'gpulog:?:utilization.gpu [%]'" \
--x "'gpulog:?:timestamp'" \
--d "'/path/to/hpcbench/json/files'" \
--outfile atoms_usage.pdf

# Plot GPU utilisation, with one log for every number of GPUs
hpcbench logs \
--matching "'meta:Machine=JADE2'" \
--matching "'run:Totals:Number of atoms=2997924'" \
--l "'slurm:gres'" \
--y "'gpulog:?:utilization.gpu [%]'" \
--x "'gpulog:?:timestamp'" \
--d "'/path/to/hpcbench/json/files'" \
--avgy \
--outfile ~/Downloads/avg_gpu_usage.pdf

Example outputs

ns/day on JADE2

jade_nsday

Energy usage on JADE2

jade_energy

GPU utilisation on JADE2

jade_utilisation

GROMACS stackplot on JADE2

stackplot

License

AGPLv3

About

A set of benchmarks for biomolecular simulation tools

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published