-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding new/updated DL4MicEverywhere_wgan-zerocostdl4mic_1.15.1
- Loading branch information
1 parent
070297a
commit 1e1bd09
Showing
4 changed files
with
205 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
# Changelog | ||
All notable changes to this project will be documented in this file. | ||
|
||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), | ||
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). | ||
|
||
## [1.15.1] - 2024-10-15 | ||
../CHANGELOG.md |
162 changes: 162 additions & 0 deletions
162
solutions/DL4MicEverywhere/wgan-zerocostdl4mic/solution.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
###album catalog: cellcanvas | ||
|
||
# Based on https://github.com/HenriquesLab/DL4MicEverywhere/blob/main/notebooks/ZeroCostDL4Mic_notebooks/WGAN_DL4Mic/configuration.yaml | ||
# and https://github.com/betaseg/solutions/blob/main/solutions/io.github.betaseg/cellsketch-plot/solution.py | ||
|
||
from album.runner.api import setup | ||
import subprocess | ||
|
||
try: | ||
subprocess.check_output('nvidia-smi') | ||
gpu_access = True | ||
except Exception: | ||
gpu_access = False | ||
|
||
def install(): | ||
from album.runner.api import get_app_path | ||
from git import Repo | ||
import subprocess | ||
import requests | ||
import shutil | ||
import os | ||
|
||
# Clone the DL4MicEverywhere repository | ||
clone_url = "https://github.com/HenriquesLab/DL4MicEverywhere" | ||
repo_path = get_app_path().joinpath("DL4MicEverywhere") | ||
Repo.clone_from(clone_url, repo_path) | ||
assert (repo_path.exists()) | ||
|
||
# URL of the notebook you want to download | ||
notebook_url = "https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/WGAN_ZeroCostDL4Mic.ipynb" | ||
|
||
notebook_path = get_app_path().joinpath("WGAN_ZeroCostDL4Mic.ipynb") | ||
notebook_path.parent.mkdir(parents=True, exist_ok=True) | ||
|
||
response = requests.get(notebook_url) | ||
response.raise_for_status() | ||
|
||
with open(notebook_path, 'wb') as notebook_file: | ||
notebook_file.write(response.content) | ||
|
||
assert notebook_path.exists(), "Notebook download failed" | ||
|
||
# Convert the notebook to its colabless form | ||
section_to_remove = "2. 6.3." | ||
section_to_remove = section_to_remove.split(' ') | ||
|
||
python_command = ["python", ".tools/notebook_autoconversion/transform.py", "-p", f"{get_app_path()}", "-n", "WGAN_ZeroCostDL4Mic.ipynb", "-s"] | ||
python_command += section_to_remove | ||
|
||
subprocess.run(python_command, cwd=to) | ||
subprocess.run(["mv", get_app_path().joinpath("colabless_WGAN_ZeroCostDL4Mic.ipynb"), get_app_path().joinpath("WGAN_ZeroCostDL4Mic.ipynb")]) | ||
|
||
# Remove the cloned DL4MicEverywhere repository | ||
if os.name == 'nt': | ||
os.system(f'rmdir /s /q "{to}"') | ||
else: | ||
# rmtree has no permission to do this on Windows | ||
shutil.rmtree(to) | ||
|
||
def run(): | ||
from album.runner.api import get_args, get_app_path | ||
import subprocess | ||
import os | ||
|
||
# Fetch arguments and paths | ||
args = get_args() | ||
app_path = get_app_path() | ||
|
||
# Path to the downloaded notebook | ||
notebook_path = app_path.joinpath("WGAN_ZeroCostDL4Mic.ipynb") | ||
|
||
# Ensure the notebook exists | ||
assert notebook_path.exists(), "Notebook does not exist" | ||
|
||
# Output path for running the notebook | ||
output_path = args.path | ||
os.makedirs(output_path, exist_ok=True) | ||
print(f"Saving output to {output_path}") | ||
|
||
# Set the LD_LIBRARY_PATH to allow TensorFlow to find the CUDA libraries | ||
global gpu_access | ||
if gpu_access: | ||
os.environ["LD_LIBRARY_PATH"] = f"{os.environ['LD_LIBRARY_PATH']}:{os.environ['CONDA_PREFIX']}/lib" | ||
|
||
# Optionally, launch the Jupyter notebook to show the results | ||
subprocess.run(["jupyter", "lab", str(notebook_path)], cwd=str(output_path)) | ||
|
||
if gpu_access: | ||
channels = """ | ||
- conda-forge | ||
- nvidia | ||
- anaconda | ||
- defaults | ||
""" | ||
dependencies = """ | ||
- python=3.9 | ||
- cudatoolkit=11.8.0 | ||
- cudnn=8.6.0 | ||
- pip | ||
- pkg-config | ||
""" | ||
else: | ||
channels = """ | ||
- conda-forge | ||
- defaults | ||
""" | ||
dependencies = f""" | ||
- python=3.9 | ||
- pip | ||
- pkg-config | ||
""" | ||
|
||
env_file = f""" | ||
channels: | ||
{channels} | ||
dependencies: | ||
{dependencies} | ||
- pip: | ||
- GitPython==3.1.43 | ||
- astropy==5.2.1 | ||
- csbdeep==0.7.3 | ||
- opencv-python==4.7.0.72 | ||
- fpdf2==2.7.4 | ||
- h5py==3.10.0 | ||
- ipywidgets==8.1.1 | ||
- matplotlib==3.5.0 | ||
- numpy==1.22.4 | ||
- pandas==1.5.3 | ||
- pip==21.2.4 | ||
- scipy==1.10.1 | ||
- scikit-image==0.19.3 | ||
- scikit-learn==1.0.1 | ||
- splinedist==0.1.2 | ||
- tabulate==0.9.0 | ||
- tensorflow==2.12.0 | ||
- tifffile==2023.2.27 | ||
- tqdm==4.65.0 | ||
- wget==3.2 | ||
""" | ||
|
||
setup( | ||
group="DL4MicEverywhere", | ||
name="wgan-zerocostdl4mic", | ||
version="1.15.1", | ||
solution_creators=["DL4Mic team", "album team"], | ||
title="wgan-zerocostdl4mic implementation.", | ||
description="Super-resolution via super-pixelisation. Wasserstein GAN (DFCAN) is a network created to transform low-resolution (LR) images to super-resolved (SR) images, published by Gulrajani I. et al. arXiv 2017. The training is done using LR-SR image pairs, taking the LR images as input and obtaining an output as close to SR as posible.", | ||
documentation="https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md", | ||
tags=['colab', 'notebook', 'WGAN', 'Super Resolution', 'ZeroCostDL4Mic', 'dl4miceverywhere'], | ||
args=[{ | ||
"name": "path", | ||
"type": "string", | ||
"default": ".", | ||
"description": "What is your working path?" | ||
}], | ||
cite=[{'doi': 'https://doi.org/10.1038/s41467-021-22518-0', 'text': 'von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0'}, {'doi': 'https://doi.org/10.48550/arXiv.1704.00028', 'text': 'Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A. Improved Training of Wasserstein GANs. arXiv. 2017 doi: https://doi.org/10.48550/arXiv.1704.00028.'}], | ||
album_api_version="0.5.1", | ||
covers=[], | ||
run=run, | ||
install=install, | ||
dependencies={"environment_file": env_file}, | ||
) |
35 changes: 35 additions & 0 deletions
35
solutions/DL4MicEverywhere/wgan-zerocostdl4mic/solution.yml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
album_api_version: 0.5.1 | ||
args: | ||
- default: . | ||
description: What is your working path? | ||
name: path | ||
type: string | ||
changelog: ../CHANGELOG.md | ||
cite: | ||
- doi: https://doi.org/10.1038/s41467-021-22518-0 | ||
text: von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning | ||
for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0 | ||
- doi: https://doi.org/10.48550/arXiv.1704.00028 | ||
text: 'Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A. Improved | ||
Training of Wasserstein GANs. arXiv. 2017 doi: https://doi.org/10.48550/arXiv.1704.00028.' | ||
covers: [] | ||
description: Super-resolution via super-pixelisation. Wasserstein GAN (DFCAN) is a | ||
network created to transform low-resolution (LR) images to super-resolved (SR) images, | ||
published by Gulrajani I. et al. arXiv 2017. The training is done using LR-SR image | ||
pairs, taking the LR images as input and obtaining an output as close to SR as posible. | ||
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md | ||
group: DL4MicEverywhere | ||
name: wgan-zerocostdl4mic | ||
solution_creators: | ||
- DL4Mic team | ||
- album team | ||
tags: | ||
- colab | ||
- notebook | ||
- WGAN | ||
- Super Resolution | ||
- ZeroCostDL4Mic | ||
- dl4miceverywhere | ||
timestamp: '2024-10-15T17:51:17.540869' | ||
title: wgan-zerocostdl4mic implementation. | ||
version: 1.15.1 |