Skip to content

Commit

Permalink
AbGroups/AbHom.v: prove is1bifunctor_ab_hom
Browse files Browse the repository at this point in the history
  • Loading branch information
gio256 committed Mar 8, 2024
1 parent 1046b48 commit 62b8d2b
Showing 1 changed file with 34 additions and 0 deletions.
34 changes: 34 additions & 0 deletions theories/Algebra/AbGroups/AbHom.v
Original file line number Diff line number Diff line change
Expand Up @@ -63,12 +63,46 @@ Proof.
by apply equiv_path_grouphomomorphism.
Defined.

Global Instance is1functor_ab_hom01 `{Funext} {A : Group^op}
: Is1Functor (ab_hom A).
Proof.
nrapply Build_Is1Functor.
- intros B B' f g p phi.
apply equiv_path_grouphomomorphism; intro a; cbn.
exact (p (phi a)).
- intros B phi.
by apply equiv_path_grouphomomorphism.
- intros B C D f g phi.
by apply equiv_path_grouphomomorphism.
Defined.

Global Instance is1functor_ab_hom10 `{Funext} {B : AbGroup@{u}}
: Is1Functor (flip (ab_hom : Group^op -> AbGroup -> AbGroup) B).
Proof.
nrapply Build_Is1Functor.
- intros A A' f g p phi.
apply equiv_path_grouphomomorphism; intro a; cbn.
exact (ap phi (p a)).
- intros A phi.
by apply equiv_path_grouphomomorphism.
- intros A C D f g phi.
by apply equiv_path_grouphomomorphism.
Defined.

Global Instance is0bifunctor_ab_hom `{Funext}
: Is0Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
Proof.
rapply Build_Is0Bifunctor.
Defined.

Global Instance is1bifunctor_ab_hom `{Funext}
: Is1Bifunctor (ab_hom : Group^op -> AbGroup -> AbGroup).
Proof.
rapply Build_Is1Bifunctor.
intros A A' f B B' g phi; cbn.
by apply equiv_path_grouphomomorphism.
Defined.

(** ** Properties of [ab_hom] *)

(** Precomposition with a surjection is an embedding. *)
Expand Down

0 comments on commit 62b8d2b

Please sign in to comment.