-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
125 additions
and
124 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,125 @@ | ||
The time-independent Schrödinger equation | ||
######################################### | ||
|
||
The time-independent Schrödinger equation | ||
|
||
.. math:: | ||
\left(-\frac{1}{2}\nabla^2 + V(\mathbf{r}) \right) \Psi_k(\mathbf{r}) = E_k \Psi_k(\mathbf{r}), \ \ k=1,2,3,\cdots | ||
For a spherical symmetric potential :math:`V(r)`, the eigenfunctions can be taken as | ||
|
||
.. math:: | ||
\Psi_{n,l,m}(\mathbf{r}) = r^{-1} u_{n,l}(r) Y_{l,m}(\theta, \phi), | ||
and the (radial) TISE becomes | ||
|
||
.. math:: | ||
-\frac{1}{2}\frac{d^2 u_{n,l}(r)}{d r^2}+\frac{l(l+1)}{2 r^2} u_{n,l}(r) + V(r)u_{n,l} = \epsilon_{n,l} u_{n,l}(r). | ||
Gauss-Legendre-Lobatto quadrature is defined on :math:`x \in [-1,1]`. | ||
We need to map the grid/Lobatto points :math:`x_i \in [-1,1]` into radial points :math:`r(x): [-1,1] \rightarrow [0, r_{\text{max}}]`. | ||
In that case, :math:`u_{n,l}(r) = u_{n,l}(r(x))`. | ||
|
||
The (rational) mapping | ||
|
||
.. math:: | ||
r(x) = L \frac{1+x}{1-x+\alpha}, \ \ \alpha = \frac{2L}{r_{\text{max}}} \label{x_to_r}, | ||
has often been used in earlier work. | ||
The parameters :math:`L` and :math:`\alpha` control the length of the grid and the density of points near :math:`r=0`. | ||
|
||
Another option is to use the linear mapping given by | ||
|
||
.. math:: | ||
r(x) = \frac{r_{\text{max}}}{2}(x+1). | ||
In order to use the Gauss-Legendre-Lobatto pseudospectral method, we must first formulate | ||
the radial TISE with respecto to :math:`x`. | ||
|
||
By the chain rule we find that for an arbitrary function :math:`\psi(r(x))` | ||
|
||
.. math:: | ||
\frac{d \psi}{dr} &= \frac{1}{\dot{r}(x)} \frac{d \psi}{dx}, \\ | ||
\frac{d^2 \psi}{dr^2} &= \frac{1}{\dot{r}(x)^2} \frac{d^2 \psi}{dx^2} - \frac{\ddot{r}(x)}{\dot{r}(x)^3} \frac{d \psi}{dx}, | ||
and the radial TISE becomes | ||
|
||
.. math:: | ||
:name: eq:unsymmetric_radial_TISE | ||
-\frac{1}{2} \left( \frac{1}{\dot{r}(x)^2} \frac{d^2 u_{n,l}}{dx^2} - \frac{\ddot{r}(x)}{\dot{r}(x)^3} \frac{d u_{n,l}}{dx} \right) + V_l(r(x)) u_{n,l}(r(x)) = \epsilon_{n,l} u_{n,l}(r(x)), | ||
where we have defined :math:`V_l(r(x)) \equiv V(r(x)) + \frac{l(l+1)}{2 r(x)^2}`. Note that this is, in general, an unsymmetric eigenvalue problem | ||
due to the presence of the term :math:`\frac{\ddot{r}(x)}{\dot{r}(x)^3}`. | ||
|
||
In order to reformulate the above as a symmetric eigenvalue problem, we define the new wavefunction :math:`\phi_{n,l}(x) = \dot{r}(x)^{1/2} u_{n,l}(r(x))`. | ||
|
||
Insertion of this into Eq. :ref:`Link title <eq:unsymmetric_radial_TISE>` yields a symmetric eigenvalue problem | ||
|
||
.. math:: | ||
:label: symmetric_radial_TISE | ||
\left(-\frac{1}{2} \frac{1}{\dot{r}(x)} \frac{d^2}{dx^2} \frac{1}{\dot{r}(x)} + V_l(r(x))+\tilde{V}(r(x)) \right) \phi_{n,l}(x) = \epsilon_{n,l} \phi_{n,l}(x), | ||
where we have defined | ||
|
||
.. math:: | ||
\tilde{V}(x) \equiv \frac{2\dddot{r}(x)\dot{r}(x)-3\ddot{r}(x)^2}{4\dot{r}(x)^4}. | ||
We discretize this equation with the pseudospectral method by expanding :math:`\phi_{n,l}(x)` and :math:`\phi_{n,l}(x)/\dot{r}(x)` as | ||
|
||
.. math:: | ||
\phi_{n,l}(x) &= \sum_{j=0}^N \phi_{n,l}(x_j) g_j(x), \\ | ||
\frac{\phi_{n,l}(x)}{\dot{r}(x)} &= \sum_{j=0}^N \frac{\phi_{n,l}(x_j)}{\dot{r}(x_j)} g_j(x). | ||
Inserting these expansions into Eq. :math:ref:`symmetric_radial_TISE` we have that | ||
|
||
.. math:: | ||
\sum_{j=0}^N \left(-\frac{1}{2} \frac{1}{\dot{r}(x)} \frac{\phi_{n,l}(x_j)}{\dot{r}(x_j)} g^{\prime \prime}_j(x) + V(r(x)) \phi_{n,l}(x_j) g_j(x) \right) = \epsilon_{n,l} \sum_{j=0}^N \phi_{n,l}(x_j) g_j(x) | ||
Next, we multiply through with :math:`g_i(x)` and integrate over :math:`x`, | ||
|
||
.. math:: | ||
\sum_{j=0}^N \left(-\frac{1}{2} \frac{\phi_{n,l}(x_j)}{\dot{r}(x_j)} \int \frac{g_i(x)}{\dot{r}(x)} g^{\prime \prime}_j(x) dx + \phi_{n,l}(x_j) \int g_i(x) V(r(x)) g_j(x) dx \right) = \epsilon_{n,l} \sum_{j=0}^N \phi_{n,l}(x_j) \int g_i(x) g_j(x) dx | ||
The integrals are evaluated with by quadrature and using the property :math:`g_j(x_i) = \delta_{i,j}` we have that | ||
|
||
.. math:: | ||
\int g_i(x) g_j(x) dx &= \sum_{m=0}^N g_i(x_m) g_j(x_m) w_m = \sum_{m=0} w_m \delta_{i, m} \delta_{j,m} = w_i \delta_{i,j}, \\ | ||
\int \frac{g_i(x)}{\dot{r}(x)} g^{\prime \prime}_j(x) dx &= \sum_{m=0} g_i(x_m) V(r(x_m)) g_j(x_m) w_m = w_i V(r(x_i)) \delta_{i,j}, \\ | ||
\int \frac{g_i(x)}{\dot{r}(x)} g^{\prime \prime}_j(x) dx & \underbrace{=}_{???} \sum_{m=1}^{N-1} \frac{g_i(x_m)}{\dot{r}(x_m)} g^{\prime \prime}_j(x_m) = w_i \frac{g^{\prime \prime}_j(x_i)}{\dot{r}(x_i)}, \ \ i=1,\cdots,N-1. | ||
Thus, for the interior grid points, | ||
|
||
.. math:: | ||
\sum_{j=1}^{N-1} \left(-\frac{1}{2} \frac{\phi_{n,l}(x_j)}{\dot{r}(x_j)} w_i \frac{g^{\prime \prime}_j(x_i)}{\dot{r}(x_i)} + \phi_{n,l}(x_j) w_i V(r(x_i)) \delta_{i,j} \right) = \epsilon_{n,l} \sum_{j=1}^{N-1} \phi_{n,l}(x_j) w_i \delta_{i,j}. | ||
Using the expressions for the :math:`g_j^{\prime \prime}(x_i)` we can write this as (notice that the weights :math:`w_i` cancels) | ||
|
||
.. math:: | ||
\sum_{j=1}^{N-1} \left(-\frac{1}{2} \frac{\tilde{g}^{\prime \prime}_j(x_i) P_N(x_i)}{\dot{r}(x_i) \dot{r}(x_j)} \frac{\phi_{n,l}(x_j)} {P_N(x_j)} \right) + \phi_{n,l}(x_i) V(r(x_i)) = \epsilon_{n,l} \phi_{n,l}(x_i). | ||
Furthermore, dividing through with :math:`P_N(x_i)`, we have that | ||
|
||
.. math:: | ||
\sum_{j=1}^{N-1} \left(-\frac{1}{2} \frac{\tilde{g}^{\prime \prime}_j(x_i)}{\dot{r}(x_i) \dot{r}(x_j)} \tilde{\phi}_{n,l}(x_j) \right) + V(r(x_i))\tilde{\phi}_{n,l}(x_i) = \epsilon_{n,l} \tilde{\phi}_{n,l}(x_i), | ||
where we have defined | ||
|
||
.. math:: | ||
\tilde{\phi}_{n,l}(x_i) \equiv \frac{\phi_{n,l}(x_i)}{P_N(x_i)}. |