Performance Evaluation of Semi-supervised Learning Frameworks for Multi-Class Weed Detection
More instructions coming soon...
- Follow the installation instructions of INSTALL.md
python train_net.py \
--num-gpus 2 \
--config configs/FCOS/fcos_R_50_ut2_sup20_run0.yaml \
SOLVER.IMG_PER_BATCH_LABEL 4 SOLVER.IMG_PER_BATCH_UNLABEL 4 SOLVER.IMS_PER_BATCH 4 \
OUTPUT_DIR ./xx/ \
TEST.EVAL_PERIOD 2000 \
SEED 1 \
SEMISUPNET.Trainer baseline
python train_net.py \
--num-gpus 2 \
--config configs/FCOS/fcos_R_50_ut2_sup20_run0.yaml \
SOLVER.IMG_PER_BATCH_LABEL 4 SOLVER.IMG_PER_BATCH_UNLABEL 4 SOLVER.IMS_PER_BATCH 4 \
OUTPUT_DIR ./xx/ \
TEST.EVAL_PERIOD 2000 \
SEED 1
python train_net.py \
--eval-only \
--num-gpus 2 \
--config configs/FCOS/fcos_R_50_ut2_sup20_run0.yaml \
SOLVER.IMG_PER_BATCH_LABEL 4 SOLVER.IMG_PER_BATCH_UNLABEL 4 SOLVER.IMS_PER_BATCH 4 \
MODEL.WEIGHTS ./model_final.pth \
OUTPUT_DIR ./xx/ \
SEMISUPNET.Trainer baseline \
SEED 1
Is this repository helpful? 😊
Please consider citing our paper. 👇👇👇
@article{li2024performance,
title={Performance evaluation of semi-supervised learning frameworks for multi-class weed detection},
author={Li, Jiajia and Chen, Dong and Yin, Xunyuan and Li, Zhaojian},
journal={Frontiers in Plant Science},
volume={15},
pages={1396568},
year={2024},
publisher={Frontiers Media SA}
}
@article{li2023label,
title={Label-efficient learning in agriculture: A comprehensive review},
author={Li, Jiajia and Chen, Dong and Qi, Xinda and Li, Zhaojian and Huang, Yanbo and Morris, Daniel and Tan, Xiaobo},
journal={Computers and Electronics in Agriculture},
volume={215},
pages={108412},
year={2023},
publisher={Elsevier}
}